Math, asked by bhko78, 11 months ago

Prove that

2 CosA = √2 + √2 + √2 + 2cos 8A ​


viratkohli51: what is international place value system and using commas

Answers

Answered by Anonymous
7

Hey mate...

here's the answer...

√{2+√(2+2cos4A)}

=√[2+√{2+2(2cos²2A-1)}]

=√{2+√(2+4cos²2A-2)}

=√(2+√4cos²2A)

=√(2+2cos2A)

=√{2+2(2cos²A-1)}

=√(2+4cos²A-2)

=√4cos²A

=2cosA .....Proved...

Hope it helps ❤️


aadityapd29: cuty beauty
sumit6844: hii
sumit6844: hallo
sumit6844: up
dinesh9247: hlo
Answered by Swarnimkumar22
12

Question-

 \bf \: 2cosA \:  =  \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2cos8A} } }  \:

Answer:

2 cosA

Step-by-step explanation:

RHS =  \sf\:  \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2cos8A} } }  \:

 =  \sf \:  \sqrt{2 +  \sqrt{2 +  \sqrt{2 (1 + cos8A)} } }  \:  \\  \\  \sf \:  =  \sqrt{2 +  \sqrt{2 +  \sqrt{2 \{1 + cos(2 \times 4 A \: ) \}} } }  \\  \\  =  \sf \:  \sqrt{2 +  \sqrt{2 +  \sqrt{2(2 {cos}^{2} 4A)} } }  \\  \\  \bf \because \: 1 + cos2x = 2 {cos}^{2} x \\  \\  =  \sf \:  \sqrt{2 +  \sqrt{2 + 2cos4A} }  \\  \\  =  \sf \:  \sqrt{2 +  \sqrt{2(1 + cos4A)} }  \\  \\  =  \sf \:  \sqrt{2 +  \sqrt{2 \{ 1 + cos(2 \times 2A\}} }  \\  \\  =  \sf \:  \sqrt{2 +  \sqrt{2( {2cos}^{2} 2A)} }  \\  \\  =  \sf \:  \sqrt{2 + 2cos2A}  \\  \\  =  \sf \:  \sqrt{2(1 + cos2A)}  \\  \\  =  \sf \:  \:  \sqrt{2(2 {cos}^{2}A) }  \\  \\  =  \sf \: 2cosA \:

Similar questions