prove that 2/(cotA Tan2A)=1-Tan^2A
Answers
Answered by
1
Answer:
Step-by-step explanation:
L.H.S. = 2 / ( cot A. tan2A )
= 2 / [ cot A ( 2 tan A / 1 - tan² A ) ] [ ∵ tan 2A = ( 2 tan A ) / ( 1 - tan² A ) ]
= 2 ( 1 -tan² A ) / 2 ( tan A. cot A )
= ( 1 - tan² A ) / ( 1 ) (∵ tan A. cot A = 1 )
= 1 - tan² A
= R.H.S.
∴ L.H.S. = R.H.S.
Hence it is proved.
Similar questions