Math, asked by yatan10, 1 year ago



Prove that 2 divided by cos square theta minus one by cos 4 theta minus 2 by sin square theta + 1 by sin 4 theta equals to cos 4 theta minus tan 4 theta.
The image of question is given above.

Attachments:

yatan10: I am the one who asked this question. Even my teacher wasn't able to do it. Is there someone who can answer this?

Answers

Answered by Avengers00
46
<b>
\large\red{Question:}

\frac{2}{Cos^{2}\: \theta}- \frac{1}{Cos^{4}\: \theta} - \frac{2}{Sin^{2}\: \theta}+\frac{1}{Sin^{4}\: \theta} = Cos^{4}\: \theta - tan^{4}\: \theta

\huge\red{Answer:}

\large\underline{LHS=}

=\frac{2}{Cos^{2}\: \theta}- \frac{1}{Cos^{4}\: \theta} - \frac{2}{Sin^{2}\: \theta}+\frac{1}{Sin^{4}\: \theta}

we have,

Sec\: \theta = \frac{1}{Cos\: \theta} &
Cosec\: \theta = \frac{1}{Sin\: \theta} &

So

=2Sec^{2}\: \theta - Sec^{4}\: \theta - 2Cosec^{2}\: \theta+Cosec^{4}\: \theta

=2Sec^{2}\: \theta - (Sec^{2}\: \theta)^{2} - 2Cosec^{2}\: \theta+(Cosec^{2}\: \theta)^{2}

We have,
Sec^{2}\: \theta = 1 + tan^{2}\: \theta
Cosec^{2}\: \theta = 1 + Cot^{2}\: \theta

=2(1 + tan^{2}\: \theta) - (1 + tan^{2}\: \theta)^{2} - 2(1 + Cot^{2}\: \theta) + (1 + Cot^{2}\: \theta)^{2}

=2 + 2tan^{2}\: \theta - (1 + tan^{4}\: \theta + 2tan^{2}\: \theta) - 2 - 2Cot^{2}\: \theta + (1 + Cot^{4}\: \theta+2Cot^{2}\: \theta)

= 2 + 2tan^{2}\: \theta - 1 - tan^{4}\: \theta - 2tan^{2}\: \theta - 2 - 2Cot^{2}\: \theta + 1 + Cot^{4}\: \theta+2Cot^{2}\: \theta

=Cot^{4}\: \theta - tan^{4}\: \theta

\large\underline{=RHS}

✓✓✓

\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Keep\: it\: Mello}}}


yatan10: thanx avenger00 for being so helpful...
Avengers00: No Mention :)
Answered by Anonymous
9

Step-by-step explanation:

here comes your answer

Attachments:
Similar questions