Math, asked by bhagavatularadhika, 10 months ago

prove that √2 is irrational​

Answers

Answered by neilakkiya
3

Answer:

Step-by-step explanation:

Therefore, √2= p/q  [ p and q are in their least terms i.e., HCF of (p,q)=1 and q ≠ 0

On squaring both sides, we get 

                  p²= 2q²                                                                                    ...(1)

Clearly, 2 is a factor of 2q²

⇒ 2 is a factor of p²                                                                    [since, 2q²=p²]

⇒ 2 is a factor of p

 Let p =2 m for all m ( where  m is a positive integer)

Squaring both sides, we get 

           p²= 4 m²                                                                                          ...(2)

From (1) and (2), we get 

          2q² = 4m²      ⇒      q²= 2m²

Clearly, 2 is a factor of 2m²

⇒       2 is a factor of q²                                                      [since, q² = 2m²]

⇒       2 is a factor of q 

Thus, we see that both p and q have common factor 2 which is a contradiction that H.C.F. of (p,q)= 1

    Therefore, Our supposition is wrong

Hence √2 is not a rational number i.e., irrational number.

Answered by suveda34
3

Answer:

\huge{\fbox{\fbox{\pink{HELLO}}}}

I have attached above the solution

hope it helps

 <marquee \: behaviour = alternate><font \: color =blue> give thanks & follow me pls

Attachments:
Similar questions
Math, 5 months ago
Math, 1 year ago