Math, asked by ay7977065, 10 months ago

prove that √2 is irrational

Answers

Answered by sanidhya973
0

Answer:

it is properly proved in the NCERT

and rs Agrawal

please give me few minutes I will edit this answer and again post the correct answer...

Answered by LtzswagGrant
1

To Prove :-

  • √2 is an irrational number.

SoluTion :-

Let's assume on the contrary that √2 is a rational number.

Then, there exists two rational numbers a and b

such that √2 = a/b where, a and b are co primes.

(√2)² = (a/b)²

→ 2 = a²/b²

→ 2b² = a²

2 divides a²

So, 2 divides a.

a = 2k , (for some integer)

a² = 4k²

2b² = 4k²

b² = 2k²

2 divides b²

2 divides b

Now, 2 divides both a and b but this contradicts that a and b are co primes.

It happened due to our wrong assumption.

Hence, 2 is irrational.

Similar questions