Math, asked by DivroopK, 9 months ago

Prove that √2 is irrational​

Answers

Answered by meemansa19
1

ANSWER

Let us assume on the contrary that

2

is a rational number. Then, there exist positive integers a and b such that

2

=

b

a

where, a and b, are co-prime i.e. their HCF is 1

⇒(

2

)

2

=(

b

a

)

2

⇒2=

b

2

a

2

⇒2b

2

=a

2

⇒2∣a

2

[∵2∣2b

2

and 2b

2

=a

2

]

⇒2∣a...(i)

⇒a=2c for some integer c

⇒a

2

=4c

2

⇒2b

2

=4c

2

[∵2b

2

=a

2

]

⇒b

2

=2c

2

⇒2∣b

2

[∵2∣2c

2

]

⇒2∣b...(ii)

From (i) and (ii), we obtain that 2 is a common factor of a and b. But, this contradicts the fact that a and b have no common factor other than 1. This means that our supposition is wrong.

Hence,

2

is an irrational number.

How satisfied are you with the answer?

I HAVE TYPED ALL THIS SOO PLZZZZ MATK AS BRAINLIEST

NOT AN EASY TASK TO ANSWER SUCH A QUESTION

Answered by Anonymous
3

Answer:

Hope it helps mark me brainliest

Attachments:
Similar questions