Math, asked by Zerina313121, 3 months ago

Prove that √2 is irrational number.

Answers

Answered by TheSecretGirl
51

Answer:

{\Huge {\mathbf {\color{navy}{Answer}}}}

{\underline {\overline {\mathbf {\green{Given}:}}}}

 {\sf{\sqrt{2} }}

 {\underline {\overline {\bf {\color{plum}{To  \: prove: \: }}}}}

{\sf{  \sqrt{2}  \: is  \: an \:  irrational  \: number.}}

{\overline {\underline {\mathbf {\color{skyblue}{Proof:}}}}}

 {\small {\sf {Let \:  us  \: assume \:  that \:   \sqrt{2}   \: is \:  a  \: rational  \: number.}}}

So it can be expressed in the form p/q where p, q are co-prime integers and q≠0

  {\sf{ \sqrt{2}  = \frac{p}{q} }}

{\small {\sf{Here \:  p \:and  \: q  \: are \:  coprime  \: numbers  \: and  \: q ≠ 0}}}

 {\underline {\overline {\bf {\color{orange}{Solving}}}}}

 {\sf{ \sqrt{2}  =   \frac{p}{q} }}

 {\sf{On  \: squaring \:  both \:  the  \: side  \: we  \: get,}}

 {\bf{=>2 =   { (\frac{p}{q} })^{2}}}

 {\bf {=> 2 {q}^{2}  =  {p}^{2} …………..(1)}}

 \bf{ \frac{ {p}^{2} }{2}  =  {q}^{2} }

 {\sf{So \:  2  \: divides \:  p \:  and \:  p \:  is \:  a  \: multiple \:  of  \: 2.}}

 \bf{⇒ p = 2m}

 \bf{⇒ {p}^{2}  = 4 {m}^{2} ………..(2)}

 {\sf{From  \: equations  \: (1) \:  and \:  (2), we \:  get,}}

 {\sf{2 {q}^{2} = 4 {m}^{2} }}

 \bf{⇒  {q}^{2}  = 2 {m}^{2} }

 \bf{⇒   {q}^{2}  \: is \:  a \:  multiple \:  of  \: 2}

 \bf{⇒  \: q  \: is  \: a  \: multiple  \: of  \: 2}

Hence, p, q have a common factor 2. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

 \bf {\pmb {\sqrt{2}   \: is \:  an \:  irrational \:  number}}

Similar questions