Prove that 2-root 2is irrational
Answers
Answer: It is an irrational number.
Step-by-step explanation:
Let's suppose √2 is a rational number. Then we can write it √2 = a/b where a, b are whole numbers, b not zero.
From the equality √2 = a/b it follows that 2 = a2/b2, or a2 = 2 · b2. So the square of a is an even number since it is two times something.
If we substitute a = 2k into the original equation 2 = a2/b2, this is what we get:
2 = (2k)2/b2
2 = 4k2/b2
2*b2 = 4k2
b2 = 2k2
This means that b2 is even, from which follows again that b itself is even. And that is a contradiction!!!
WHY is that a contradiction? Because we started the whole process assuming that a/b was simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that √2 is rational) is not correct. Therefore √2 cannot be rational.