Math, asked by angelicarose2048, 1 year ago

prove that 2 root 3 + root 5 is an irrational number also check whether( 2 root 3+root 5) (2 root 3 -root 5 ) is rational or irrational

Answers

Answered by chanchal12345
16

let \: 2 \sqrt{3 }  +  \sqrt{5} be \: rational \: number \\  \\ thus \: it \: can \: be \: represented \: in \:  \\ the \: form  \: of \:  \frac{p}{q}

here \: p \: and \: q \: are \: co \:  - primes \:  \\  (only \: one common \: factor)

and \: q \: i s \: not \:  = 0

 2   \sqrt{3}  + \sqrt{5}  =  \frac{p}{q}

multiply \: \: by \:  \frac{1}{2} both \: sides

 \sqrt{3}  +  \sqrt{5}  \times \frac{1}{2}  =  \frac{p}{2q}  \\   \\  \frac{ \sqrt{5} }{2}  =  \frac{p}{2q}  -  \sqrt{3}

 \frac{ \sqrt{5} }{2}  =  \frac{p - 2 \sqrt{3} q}{2q}

  \sqrt{5}  =    \frac{p - 2 \sqrt{3}q }{q}

 multiply \: by \: 2 \sqrt{3}both \: sides \\  \sqrt{5 }  \times 2 \sqrt{3}  =  \frac{p - 2 \sqrt{3} q}{q}  \times 2 \sqrt{3}

2 \sqrt{15 }  =  \frac{2 \sqrt{3p}  }{q}  -  \frac{12q} {q}

 \frac{12}  \:  \: =  \frac{2 \sqrt{3}p }{q}  - 2 \sqrt{15}

12 =  \frac{2 \sqrt{3}p  - 2 \sqrt{15}q }{q}

but \: we \: know \: that \: a \: rational \: number  \\ \: is \: not \: equal \: to \: an \: irrational \: number \\  \\ this \: contradiction \: has \: arisen \\  \: due \: to \: our \: incorrect \: assumption \:  \\  \\ thus \: our \: assumption \: is \: wrong \: \\  and \: 2 \sqrt{3}  +  \sqrt{5} is \: irrational

Answered by omgautam7
3

Answer:

BUTTON AND BOYS ARE ALL IN DELHI AND REPLY AS WELL AS A CHANNEL OF FOOD AND

Similar questions