Math, asked by maheentanwar6506, 1 year ago

Prove that 2 sin^−1 3/5=tan^−1 24/7.

Answers

Answered by Pitymys
10

Use the identity,

 \sin 2\theta =2\sin \theta \cos \theta\\<br />2\theta = \sin ^{-1} (2\sin \theta \cos \theta)

Here,

 LHS=2\sin ^{-1}(\frac{3}{5}) =\sin ^{-1}(2*\frac{3}{5}\sqrt{1-(\frac{3}{5})^2})  \\<br />LHS=2\sin ^{-1}(\frac{3}{5}) =\sin ^{-1}(2*\frac{3}{5}\frac{4}{5})  \\<br />LHS=2\sin ^{-1}(\frac{3}{5}) =\sin ^{-1}(\frac{24}{25})  \\<br />LHS=2\sin ^{-1}(\frac{3}{5}) =\tan ^{-1}(\frac{24}{\sqrt{25^2-24^2}})   \\<br />LHS=2\sin ^{-1}(\frac{3}{5}) =\tan ^{-1}(\frac{24}{\sqrt{49}})   \\<br />LHS=2\sin ^{-1}(\frac{3}{5}) =\tan ^{-1}(\frac{24}{7})   =RHS

The proof is complete.

Similar questions