Math, asked by jkc9398, 9 months ago

Prove that: 2 sin 2 A + sin 4 A / 2 sin 2 A - sin 4 A = cot square A Guys ! Plz help me with this question

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

 L. H. S.

=\frac{2sin(2A) + sin(4A)} {2sin(2A) - sin(4A)}

=\frac{2sin(2A) + 2sin(2A)cos(2A)} {2sin(2A) - 2sin(2A)cos(2A)}

=\frac{2sin(2A)[1 + cos(2A)]} {2sin(2A)[1 - cos(2A)]}

=\frac{[1 + cos(2A)]} {[1 - cos(2A)]}

=\frac{2cos^2(A)} {2sin^2(A)}

=\frac{cos^2(A)} {sin^2(A)}

=cot^2(A)

= R. H. S.

Hence Proved

Similar questions