Math, asked by manishashiraskar35, 8 months ago

prove that 2(sin^6 A+cos^6 A)-3(sin^4 A+cos^4 A)+1=0​

Answers

Answered by fflegends9494
0

Answer:

2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1

= 2{(sin²θ)³+(cos²θ)³}-3{(sin²θ)²+(cos²θ)²}+1

= 2{(sin²θ+cos²θ)³-3sin²θcos²θ(sin²θ+cos²θ)}-3{(sin²θ+cos²θ)²-2sin²θcos²θ}+1

=2(1-3sin²θcos²θ)-3(1-2sin²θcos²θ)+1

=2-6sin²θcos²θ-3+6sin²θcos²θ+1

=-1+1

=0 (Proved)

Answered by Dɪʏᴀ4Rᴀᴋʜɪ
4

<body bgcolor=pink>

\huge \purple{QUESTION}

prove that 2(sin^6 A+cos^6 A)-3(sin^4 A+cos^4 A)+1=0

\huge \purple{ANSWER}

2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1

= 2{(sin²θ)³+(cos²θ)³}-3{(sin²θ)²+(cos²θ)²}+1

= 2{(sin²θ+cos²θ)³-3sin²θcos²θ(sin²θ+cos²θ)}-3{(sin²θ+cos²θ)²-2sin²θcos²θ}+1

=2(1-3sin²θcos²θ)-3(1-2sin²θcos²θ)+1

=2-6sin²θcos²θ-3+6sin²θcos²θ+1

=-1+1

=0 (Proved)

HOPE SO IT IS HELPFUL..❣️✌️..

Similar questions