prove that 2(sin*6Φ+cos*6Φ)-3(sin*4Φ+cos4Φ)+1=0
Answers
Answered by
0
Answer:
Jekekfiodoikeoewjfio
Answered by
1
Answer:
mark me as brainliest if my answer help you
Step-by-step explanation:
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1
=2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1
=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2
-2sin2θcos2θ]+1
The algebraic identity
a3 + b3 = (a+b)3 - 3ab(a+b) and
a2 + b2 = (a+b)2 - 2ab
are used in the above step where
a = sin2θ and b = cos2θ.
writing sin2θ + cos2θ = 1, we have
= 2[1-3 sin2θ cos2θ] -3[-2 sin2θcos2θ] + 1
= 2-6 sin2θcos2θ -3 + 6 sin2θcos2θ + 1
= -3+3=0
Similar questions