Prove that 2(sin^6+cos^6)-3(sin4+cos^4)+1=0
Answers
Answered by
1
Answer:
0
Step-by-step explanation:
we know that
cos^2n+sin^2n =1
2(1)-3(1)+1=0
Answered by
4
Answer:
Proved
Step-by-step explanation:
2(sin∧6x+cos^6x)-3(sin4x+cos^4x)+1
= 2(sin²x+cos²x)( sin∧4x + cos∧4x - sin²xcos²x) -3(sin∧4x+cos^4x)+1
= 2 ( sin∧4x + cos∧4x - sin²xcos²x) -3(sin∧4x+cos^4x)+1
= 2( sin∧4x + cos∧4x + 2sin²xcos²x-3 sin²xcos²x) -3(sin∧4x+cos^4x)+1
= 2{(sin²x+cos²x)² - 3 sin²xcos²x} - 3(sin∧4x+cos^4x)+1
= 2 { 1 - 3 sin²xcos²x} - 3(sin∧4x+cos^4x)+1
= 2 - 3 ( sin∧4x+cos^4x + 2sin²xcos²x) + 1
= 3 - 3 ( sin²x+cos²x)²
= 3 - 3
= 0
Similar questions
Science,
6 months ago
English,
6 months ago
Computer Science,
1 year ago
English,
1 year ago
Science,
1 year ago