Prove that
2 sin(a-c)cosb-sin(a-2 c)/2 sin(b-c)cosc-sin(b-2c)=sina/sinb
Answers
Given: The correct term is:
2sin(a - c)cos c - sin(a - 2c) / 2sin(b - c) cos c - sin(b - 2c) = sina/sinb
To find: Prove LHS = RHS.
Solution:
- Now the given term is:
2sin(a - c)cos c - sin(a - 2c) / 2sin(b - c) cos c - sin(b - 2c) = sina/sinb
- Lets consider LHS, we have:
2sin(a - c)cos c - sin(a - 2c) / 2sin(b - c) cos c - sin(b - 2c)
- Consider numerator, we have:
2sin(a - c)cos c - sin(a - 2c)
- Now using formulas:
sin(x−y) = sinx cosy − cosx siny
cos2y = 2cos2y − 1
sin2x = 2sinx cosx
- We get:
2(sina cosc - cosa sinc) x cosc - ( sina cos2c - cosa sin2c)
2sinacos2c - 2cosa cosc x sinc - ( sina (2cos2c - 1) - cosa x 2 x sinc x cosc)
- Now after cancelation, it remains:
sin a
- Consider denominator, we have:
2sin(b - c) cos c - sin(b - 2c)
- Using same formulas, we get:
2( sinbcosc - cosbsinc ) x cosc ( sinbcos2c - cosbsin2c )
2sinbcos2c - 2cosbsinc x cosc - ( sinb (2cos2c - 1) - cosb x 2sinc x cosc)
- Now after cancellation, it remains:
sin b
- So combining numerator and denominator, we get:
sin a / sin b = RHS
- Hence proved.
Answer:
So in solution, we proved that :
2sin(a - c)cos c - sin(a - 2c) / 2sin(b - c) cos c - sin(b - 2c) = sina/sinb
Answer:
iiokikplokukoliiikkkjjhujj