Math, asked by Aparnadelhi, 5 months ago

prove that: 2 sin square pi/6+ cosec square 7 pi/6×cos square pi/3=3/2​

Answers

Answered by pratyush15899
5

Step-by-step explanation:

pls check the one by one all three attachments for all the step.

Hope it will help you. :)

Attachments:
Answered by AssasianCreed
6

\large{\underline{ \boxed{ \sf \pink{\bigstar \:  question}}}} </p><p></p><p>

Prove that :-

  • \implies \bf\rm2  { \sin }^{2}  \dfrac{ \pi}{6}  +  { \csc }^{2}  \dfrac{7  \pi}{6}  \times  { \cos} ^{2}  \dfrac{ \pi}{3}

\large{\underline{ \boxed{ \sf \red{\bigstar \:  solution}}}} </p><p></p><p>

Taking LHS :-

  •  = 2 { \sin }^{2}  \dfrac{ \pi}{6}  +  { \csc }^{2}  \dfrac{7 \pi}{6}  \times  { \cos}^{2}  \dfrac{ \pi}{3}
  •  \\  \\  = 2 { \sin}^{2}  \frac{ \pi}{6}  +  { \csc }^{2}  \bigg( \pi +  \frac{ \pi}{6}  \bigg) \times  { \cos }^{2}  \frac{ \pi}{3}
  •  \\  \\  = 2  {\bigg( \frac{1}{2}  \bigg)}^{2}  -  { \csc }^{2}  \bigg( \frac{ \pi}{6}  \bigg) \times  { \ \cos }^{2}  \frac{ \pi}{3}
  •   \\  \\  =  \cancel2 \times  \frac{ \cancel1}{ \cancel4}  +  {( - 2)}^{2}  \times{\bigg( \frac{1}{2}  \bigg)}^{2}
  •  \\  \\  =  \frac{1}{2}  +  \frac{ \cancel4}{1}  \times  \frac{1}{ \cancel4}
  •  \\  \\  =  \dfrac{1}{2}  +  \dfrac{1}{2}  =  \dfrac{1 + 2}{2}  =  \dfrac{3}{2}

LHS = RHS

\huge{ \sf \underline{{ ╬Hence \:Proved   ╬ \: \: }}}

Similar questions