Prove that : 2 (sin6 0 + cos6 0) – 3 (sin4 0 + cos4 0) + 1 = 0.
Answers
Answered by
1
Step-by-step explanation:
2{(sin60+cos(90-30)} - 3 {(sin40 + cos(90-50)} +1 =0
2{sin(60) + cos 30} - 3 {sin 40 + sin 50} + 1
now out values of sin60 and cos 30 and apply formula of sin A + sin B , so you will get your answer
Answered by
1
Answer:
LHS=2(sin
6
θ+cos
6
θ)−3(sin
4
θ+cos
4
θ)+1
=2{(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)}−3(sin
2
θ+cos
2
θ)
2
−2(sin
2
θcos
2
θ)}+1
We know, [sin²x+cos²x=1]
=2{1−3sin
2
θcos
2
θ}−3{1−2sin
2
θcos
2
θ}+1
=2−6sin
2
θcos
2
θ−3+6sin
2
θcos
2
θ+1
=0
=RHS
Similar questions