Math, asked by Anonymous, 5 months ago

prove that 2(Sin⁶θ+Cos⁶θ)-3(Sin⁴θ+Cos⁴θ)+1 = 0. ​

Answers

Answered by TheFairyTale
7

Given :-

  • 2(Sin⁶θ+Cos⁶θ)-3(Sin⁴θ+Cos⁴θ)+1

To Prove :-

  • LHS = 0

Step-by-step explanation:

 \sf \: LHS = 2( \sin^{6}  \theta +  \cos^{6}  \theta )  - 3( \sin^{4}  \theta +  { \cos^{4}  \theta}) + 1

 \implies \sf \: 2 [( \sin^{2} \theta)^{3}  + ( \cos^{2} \theta)^{3}   ] - 3[( \sin^{2} \theta)^{2}  + ( \cos^{2} \theta)^{2}   ] + 1

 \implies \sf \: 2[( \sin^{2} \theta +  \cos^{2} \theta)^{3}   - 3 \sin^{2} \theta   \cos^{2} \theta(\sin^{2} \theta +  \cos^{2} \theta)] - 3[(\sin^{2} \theta +  \cos^{2} \theta)^{2}  - 2\sin^{2} \theta \cos^{2} \theta]

 \implies \sf \: 2[( 1)^{3}   - 3 \sin^{2} \theta   \cos^{2} \theta \times 1] - 3[(1)^{2}  - 2\sin^{2} \theta \cos^{2} \theta] + 1

 \implies \sf \: 2(1 - 3\sin^{2} \theta \cos^{2} \theta) - 3(1 - 2\sin^{2} \theta \cos^{2} \theta) + 1

 \implies  \sf \: 2 - 6\sin^{2} \theta \cos^{2} \theta - 3 + 6\sin^{2} \theta \cos^{2} \theta + 1

 \implies \sf \: 2 - 3 + 1

 \implies \boxed{ \red{ \bold{ \sf \: 0 \: }}} =  \sf \:  RHS

Hence, Proved!

Answered by bhawana9129
0

Answer:

I'm also in 10th dii

how r you

please mark as brainliest answer

Similar questions