Math, asked by Anonymous, 5 months ago

prove that 2(Sin⁶θ+Cos⁶θ)-3(Sin⁴θ+Cos⁴θ)+1 = 0.


No copied answers.
kindly answer fruitfully ! ​

Answers

Answered by noor075
3

Answer:

LHS = RHS

Hence , Proved

Step-by-step explanation:

Log to C*"'_&##$ Hai ... Take Care Dude

....

Attachments:
Answered by Anonymous
5

\huge\underline\mathfrak\purple{Answer}

2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)

= 2{(sin²θ)³+(cos²θ)³}-3{(sin²θ)²+(cos²θ)²}

=2{(sin²θ+cos²θ)³-3sin²θcos²θ(sin²θ+cos²θ)}-3{(sin²θ+cos²θ)²-2sin²θcos²θ}

=2(1-3sin²θcos²θ)-3(1-2sin²θcos²θ)

=2-6sin²θcos²θ-3+6sin²θcos²θ

=-1

{\huge{\fcolorbox{black}{WHITE}{♡HAN JU HUI♡}}}

Similar questions