prove that 2(Sin⁶θ+Cos⁶θ)-3(Sin⁴θ+Cos⁴θ)+1 = 0.
No copied answers.
kindly answer fruitfully !
Answers
Answered by
3
Answer:
LHS = RHS
Hence , Proved
Step-by-step explanation:
Log to C*"'_&##$ Hai ... Take Care Dude
....
Attachments:
Answered by
5
2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)
= 2{(sin²θ)³+(cos²θ)³}-3{(sin²θ)²+(cos²θ)²}
=2{(sin²θ+cos²θ)³-3sin²θcos²θ(sin²θ+cos²θ)}-3{(sin²θ+cos²θ)²-2sin²θcos²θ}
=2(1-3sin²θcos²θ)-3(1-2sin²θcos²θ)
=2-6sin²θcos²θ-3+6sin²θcos²θ
=-1
Similar questions