. Prove that 2 (sin6A + cos6A) – 3 (sin4A + cos4A ) + 1 = 0
Answers
Answered by
1
Step-by-step explanation:
LHS=2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1
=2{(sin2θ+cos2θ)3−3sin2θcos2θ(sin2θ+cos2θ)}−3(sin2θ+cos2θ)2−2(sin2θcos2θ)}+1
We know, [sin²x+cos²x=1]
=2{1−3sin2θcos2θ}−3{1−2sin2θcos2θ}+1
=2−6sin2θcos2θ−3+6sin2θcos2θ+1=0
=RHS
Similar questions