Math, asked by likhitaishu3, 10 months ago

prove that: 2 tan-¹1/5+ tan-¹1/8= tan-¹4/7

Answers

Answered by rocky200216
1

Hope it's helpful to you.

Please mark as Brainlist answer.

Attachments:
Answered by Anonymous
68

Question :

Prove that

 \sf2 \tan {}^{ - 1}  \frac{1}{5}  +  \tan {}^{ - 1}  \frac{1}{8}  =  \tan {}^{ - 1}  \frac{4}{7}

Formula's used :

 \sf1)2 \tan {}^{ - 1} x =  \tan {}^{ - 1} ( \dfrac{2x}{1 - x {}^{2} } ) \: where \: - 1 < x < 1

 \sf2) \tan { }^{ - 1} x +  \tan {}^{ - 1} y =  \tan {}^{ - 1}  ( \dfrac{x + y}{1 - xy}) \: where \: xy < 1

Solution :

We have to Prove that :

 \sf2 \tan {}^{ - 1}  \frac{1}{5}  +  \tan {}^{ - 1}  \frac{1}{8}  =  \tan {}^{ - 1}  \frac{4}{7}

LHS

 =  \sf2 \tan {}^{ - 1}  \frac{1}{5}  +  \tan {}^{ - 1}  \frac{1}{8}

 \sf \: use \:2 tan {}^{ - 1} x \: formula

  = \sf \tan {}^{ - 1}( \dfrac{ \frac{2}{5} }{1 -  (\frac{1}{5}){}^{2} }) +  \tan {}^{ - 1}  \frac{1}{8}

 =  \tan {}^{ - 1} ( \dfrac{ \frac{2}{5} }{1 -  \frac{1}{25} } ) +  \tan {}^{ - 1}  \frac{1}{8}

 \sf =  \tan {}^{ - 1} ( \dfrac{10}{24} ) +  \tan {}^{ - 1} ( \dfrac{1}{8})

 \sf \: now \: use \: formula \tan {}^{ - 1} x +  \tan {}^{ - 1}y

 \sf =  \tan {}^{ - 1} ( \dfrac{ \frac{10}{24}  +  \frac{1}{8} }{1 -  \frac{10}{24}  \times \frac{1}{8}} )

  \sf =  \tan {}^{ - 1} ( \dfrac{ \frac{10 + 3}{24} }{ \frac{24 \times 8 - 10}{24 \times 8} } )

  \sf =  \tan {}^{ - 1} ( \frac{13 \times 24 \times 8}{24 \times 182} )

 \sf =  \tan {}^{ - 1}(  \frac{4}{7})

RHS

 \sf =  \tan {}^{ - 1} ( \frac{4}{7} )

LHS = RHS

Hence proved !

Similar questions