Math, asked by 77282sumit, 1 year ago

prove that : 200!/(10!)^20 × 19!

Answers

Answered by hardikakshay22
0

Let N=nd=200!(10!)20⋅19!. To show N is an integer, consider the set S of all primes that divide the denominator. For each p∈S, we must show that the highest power of p dividing the numerator is at least as much as the highest power of p dividing the denominator.

Let ep(n) denote the highest power of p dividing n. By de Polignac’s formula De Polignac's formula

ep(n!)=∑k≥1⌊npk⌋. …(⋆)

Note that S={2,3,5,7,11,13,17,19}. If p∈{11,13,17,19}, then ep(d)=1 and ep(n)≥1.

We use eqn. (⋆) to prove that ep(n)≥ep(d) for p∈{2,3,5,7}.

e_2(n) = ⌊2002⌋+⌊2004⌋+⌊2008⌋+⌊20016⌋+⌊20032⌋+⌊20064⌋+⌊200128⌋

=100+50+25+12+6+3+1=197.

e2(d)=20⋅e2(10!)+e2(19!)

=20(⌊102⌋+⌊104⌋+⌊108⌋)+⌊192⌋+⌊194⌋+⌊198⌋+⌊1916⌋

=20(5+2+1)+(9+4+2+1)=176.

We may similarly compute

e3(n)=66+22+7+2=97,e3(d)=20(3+1)+(6+2)=88.

e5(n)=40+8+1=49,e5(d)=(20⋅2)+3=43.

e7(n)=28+4=32,e7(d)=(20⋅1)+2=22.


This completes the verification, and the proof that N is an integer

Similar questions