prove that 2a^2 +2b^2 +2c^2 -2ab -2bc -2ca = [ (a-b)^2 + (b-c)^2 + (c-a)^2 ]
Answers
Answered by
219
Hlo Brother
Good Morning
Here is your answer
To prove :
2a² + 2b² + 2c²- 2ab - 2bc -2ca = [ (a-b)^2 + (b-c)^2 + (c-a)^2 ]
Proof :
L.H.S = 2a² + 2b² + 2c² - 2ab - 2bc - 2ca
a² + a² + b² + b² + c² + c² - 2ab - 2bc - 2ca
a² - 2ab + b² + b² - 2bc + c² + c² - 2ca + a²
( a² - 2ab + b² ) +( b² - 2bc + c² )+ ( c² - 2ca + a² )
Using ( a - b )² = a² - 2ab + b² ,
( b - c )² = b² - 2bc + c² ,
( c - a )² = c² - 2ac + a²
L.H.S = ( a - b )² + ( b - c )² + ( c - a )²
L.H.S = R.H.S
( a - b )² + ( b - c )² + ( c - a )² = ( a - b )² + ( b - c)² + ( c - a )²
Hence Verified
Have a GOOD DAY bro
Please mark my answer as the
BRAINLIEST
ANSWER
Good Morning
Here is your answer
To prove :
2a² + 2b² + 2c²- 2ab - 2bc -2ca = [ (a-b)^2 + (b-c)^2 + (c-a)^2 ]
Proof :
L.H.S = 2a² + 2b² + 2c² - 2ab - 2bc - 2ca
a² + a² + b² + b² + c² + c² - 2ab - 2bc - 2ca
a² - 2ab + b² + b² - 2bc + c² + c² - 2ca + a²
( a² - 2ab + b² ) +( b² - 2bc + c² )+ ( c² - 2ca + a² )
Using ( a - b )² = a² - 2ab + b² ,
( b - c )² = b² - 2bc + c² ,
( c - a )² = c² - 2ac + a²
L.H.S = ( a - b )² + ( b - c )² + ( c - a )²
L.H.S = R.H.S
( a - b )² + ( b - c )² + ( c - a )² = ( a - b )² + ( b - c)² + ( c - a )²
Hence Verified
Have a GOOD DAY bro
Please mark my answer as the
BRAINLIEST
ANSWER
Answered by
3
Answer:
L.H.S.=2a
2
+2b
2
+2c
2
−2ab−2bc−2ca
On re-arranging the terms, we get
=(a
2
−2ab+b
2
)+(b
2
−2bc+c
2
)+(c
2
−2ca+a
2
)
=(a−b)
2
+(b−c)
2
+(c−a)
2
=R.H.S.
Hence, 2a
2
+2b
2
+2c
2
−2ab−2bc−2ca=[(a−b)
2
+(b−c)
2
+(c−a)
2
]
Similar questions
Social Sciences,
7 months ago
English,
7 months ago
English,
7 months ago
Science,
1 year ago
Biology,
1 year ago
Political Science,
1 year ago