Math, asked by Aasiq, 1 year ago

Prove that :(2a/2b)a+b x (2b/2c)b+c x (2c/2a)c+a =1 .

Answers

Answered by YASH3100
73
Heya!!!


Here is your answer,



Hope it helps you,
Thank you.
Attachments:

Aasiq: Thanks bro
YASH3100: Most welcome bro ☺
Answered by pinquancaro
74

Answer and Explanation:

To prove : (\frac{2^a}{2^b})^{a+b}\times(\frac{2^b}{2^c})^{b+c}\times(\frac{2^c}{2^a})^{c+a}=1

Proof :

Taking LHS,

(\frac{2^a}{2^b})^{a+b}\times(\frac{2^b}{2^c})^{b+c}\times(\frac{2^c}{2^a})^{c+a}

Apply \frac{x^a}{x^b}=x^{a-b}

=(2^{a-b})^{a+b}\times(2^{b-c})^{b+c}\times(2^{c-a})^{c+a}

Apply (x^a)^b=x^{ab}

=2^{(a-b)(a+b)}\times2^{(b-c)(b+c)}\times2^{(c-a)(c+a)}

We know, (a-b)(a+b)=a^2-b^2

=2^{a^2-b^2}\times2^{b^2-c^2}\times2^{c^2-a^2}

Apply x^a\times x^b=x^{a+b}

=2^{a^2-b^2+b^2-c^2+c^2-a^2}

=2^{0}

=1

= RHS

Hence proved.

Similar questions