Prove that - -2a a+b c+a
a+b -2b b+c = 4(a-b)(b-c)(c-a)
c+a c+b -2c
Answers
Answered by
0
Step-by-step explanation:
△=
∣
∣
∣
∣
∣
∣
∣
∣
b+c
c+a
a+b
c+a
a+b
b+c
a+b
b+c
c+a
∣
∣
∣
∣
∣
∣
∣
∣
⇒R
1
=R
1
+R
2
+R
3
⇒△=
∣
∣
∣
∣
∣
∣
∣
∣
2(a+b+c)
a+c
a+b
2(a+b+c)
a+b
b+c
2(a+b+c)
b+c
c+a
∣
∣
∣
∣
∣
∣
∣
∣
=2(a+b+c)
∣
∣
∣
∣
∣
∣
∣
∣
1
c+a
a+b
1
a+b
b+c
1
b+c
c+a
∣
∣
∣
∣
∣
∣
∣
∣
⇒C
2
=C
2
−C
1
;C
3
=C
3
−C
1
⇒△=2(a+b+c)
∣
∣
∣
∣
∣
∣
∣
∣
1
c+a
a+b
0
b−c
c−a
0
b−a
c−b
∣
∣
∣
∣
∣
∣
∣
∣
expanding along C
1
⇒△=2(a+b+c)×1
∣
∣
∣
∣
∣
∣
b−c
c−a
b−a
c−b
∣
∣
∣
∣
∣
∣
=2(a+b+c)[(b−c)(c−b)−(b−a)(c−a)]
=2(a+b+c)[bc−c
2
+bc−b
2
−bc+ac−a
2
+ab]
=2(a+b+c)(ab+bc+ca−a
2
−b
2
−c
2
)
Hence, proved.
Similar questions