prove that
2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = (a-b)2 +(b-c)2 + (c - a)2
Answers
Answer:-
To Prove:-
2a² + 2b² + 2c² - 2ab - 2bc - 2ca = (a - b)² + (b - c)² + (c - a)²
Using (a - b)² = a² + b² - 2ab in RHS we get,
⟹ 2a² + 2b² + 2c² - 2ab - 2bc - 2ca = a² + b² - 2ab + b² + c² - 2bc + c² + a² - 2ca
⟹ 2a² + 2b² + 2c² - 2ab - 2bc - 2ca = a² + a² + b² + b² + c² + c² - 2ab - 2bc - 2ca
⟹ 2a² + 2b² + 2c² - 2ab - 2bc - 2ca = 2a² + 2b² + 2c² - 2ab - 2bc - 2ca
⟹ LHS = RHS
Hence, Proved.
_________________________________
Some important formulae:-
- (a + b)² = a² + b² + 2ab
- a² - b² = (a + b)(a - b)
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
- (a - b - c)² = a² + b² + c² - 2ab + 2bc - 2ac
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- (x + a)(x + b) = x² + (a + b)x + ab
- a² + b² = (a + b)² - 2ab
- a² + b² = (a - b)² + 2ab
- (a - b)² = (a + b)² - 4ab
- (a + b)² = (a - b)² + 4ab
- (a + b)² - (a - b)² = 4ab
Answer:
To Prove :-
Prove :
Here,
L.H.S = 2a² + 2b² + 2c² - 2ab - 2bc - 2ca
a² + a² + b² + b² + c² + c² - 2ab - 2bc - 2ca
a² - 2ab + b² + b² - 2bc + c² + c² - 2ca + a²
By grouping them
( a² - 2ab + b² ) + ( b² - 2bc + c² ) + ( c² - 2ca + a² )
Now,
By uing identity
Using ( a - b )² = a² - 2ab + b²
And putting value
( b - c )² = b² - 2bc + c²
( c - a )² = c² - 2ac + a²
L.H.S = ( a - b )² + ( b - c )² + ( c - a )²
L.H.S = R.H.S