Math, asked by shagiffta676, 5 months ago

prove that

2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = (a-b)2 +(b-c)2 + (c - a)2


Answers

Answered by VishnuPriya2801
38

Answer:-

To Prove:-

2a² + 2b² + 2c² - 2ab - 2bc - 2ca = (a - b)² + (b - c)² + (c - a)²

Using (a - b)² = + - 2ab in RHS we get,

⟹ 2a² + 2b² + 2c² - 2ab - 2bc - 2ca = a² + b² - 2ab + b² + c² - 2bc + c² + a² - 2ca

⟹ 2a² + 2b² + 2c² - 2ab - 2bc - 2ca = a² + a² + b² + b² + c² + c² - 2ab - 2bc - 2ca

⟹ 2a² + 2b² + 2c² - 2ab - 2bc - 2ca = 2a² + 2b² + 2c² - 2ab - 2bc - 2ca

⟹ LHS = RHS

Hence, Proved.

_________________________________

Some important formulae:-

  • (a + b)² = a² + b² + 2ab

  • a² - b² = (a + b)(a - b)

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a - b - c)² = a² + b² + c² - 2ab + 2bc - 2ac

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

  • (x + a)(x + b) = x² + (a + b)x + ab

  • a² + b² = (a + b)² - 2ab

  • a² + b² = (a - b)² + 2ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² = (a - b)² + 4ab

  • (a + b)² - (a - b)² = 4ab

Answered by Anonymous
31

Answer:

To Prove :-

 \bullet \sf \:  {2a}^{2}  + 2 {b}^{2}  + 2 {c}^{2}  - 2ab - 2bc - 2ca = (a -  {b)}^{2} +  ( {b - c)}^{2}  +  {(c - a)}^{2}

Prove :

Here,

L.H.S = 2a² + 2b² + 2c² - 2ab - 2bc - 2ca

a² + a² + b² + b² + c² + c² - 2ab - 2bc - 2ca

a² - 2ab + b² + b² - 2bc + c² + c² - 2ca + a²

By grouping them

( a² - 2ab + b² ) + ( b² - 2bc + c² ) + ( c² - 2ca + a² )

Now,

By uing identity

Using ( a - b )² = a² - 2ab + b²

And putting value

( b - c )² = b² - 2bc + c²

( c - a )² = c² - 2ac + a²

L.H.S = ( a - b )² + ( b - c )² + ( c - a )²

L.H.S = R.H.S

Therefore :-

 \bullet \sf \:  {2a}^{2}  + 2 {b}^{2}  + 2 {c}^{2}  - 2ab - 2bc - 2ca = (a -  {b)}^{2} +  ( {b - c)}^{2}  +  {(c - a)}^{2}

Similar questions