prove that 2cos^2A + cos^2 2A - 2 cos 2 A * cos^2 A = 1
Answers
Answered by
2
Solution :-
→ 2cos²A + cos² 2A - 2cos 2A * cos²A = 1
→ 2cos²A - 2cos 2A * cos²A + cos² 2A = 1
→ 2•cos²A(1 - cos 2A) + cos² 2A = 1
→ 2•cos²A•(2sin²A) + cos² 2A = 1
→ (4•cos²A•sin²A) + cos² 2A = 1
→ (2•cos A •sin A)² + cos² 2A = 1
→ sin² 2A + cos² 2A = 1
→ 1 = 1 (Proved) .
Learn more :-
prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA
https://brainly.in/question/15100532
help me with this trig.
https://brainly.in/question/18213053
Similar questions