Math, asked by tamangprathanah, 8 months ago

prove that 2cos^2A + cos^2 2A - 2 cos 2 A * cos^2 A = 1​

Answers

Answered by RvChaudharY50
2

Solution :-

→ 2cos²A + cos² 2A - 2cos 2A * cos²A = 1

→ 2cos²A - 2cos 2A * cos²A + cos² 2A = 1

→ 2•cos²A(1 - cos 2A) + cos² 2A = 1

→ 2•cos²A•(2sin²A) + cos² 2A = 1

→ (4•cos²A•sin²A) + cos² 2A = 1

→ (2•cos A •sin A)² + cos² 2A = 1

→ sin² 2A + cos² 2A = 1

1 = 1 (Proved) .

Learn more :-

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA

https://brainly.in/question/15100532

help me with this trig.

https://brainly.in/question/18213053

Similar questions