Prove that:-2cos^2theta-cos^4theta+sin^4theta=1
Answers
Answered by
4
Required Answer:-
Given to prove:
- 2cos²θ - cos⁴θ + sin⁴θ = 1
Proof:
Taking LHS,
2cos²θ - cos⁴θ + sin⁴θ
= 2cos²θ + sin⁴θ - cos⁴θ
= 2cos²θ + (sin²θ)² - (cos²θ)²
= 2cos²θ + (sin²θ + cos²θ)(sin²θ - cos²θ)
We know that,
➡ sin²θ + cos²θ = 1
Therefore,
2cos²θ + (sin²θ + cos²θ)(sin²θ - cos²θ)
= 2cos²θ + sin²θ - cos²θ
= sin²θ + cos²θ
= 1 [As sin²θ + cos²θ = 1]
= RHS (Hence Proved)
Formula Used:
- sin²θ + cos²θ = 1
More Formulae:
- cosec²θ - cot²θ = 1
- sec²θ - tan²θ = 1
- sin(90° - θ) = cosθ
- cosec(90° - θ) = secθ
- tan(90° - θ) = cotθ
- sinθ/cosθ = tanθ
Similar questions
English,
2 months ago
Math,
2 months ago
Math,
2 months ago
Computer Science,
5 months ago
Science,
5 months ago
Science,
11 months ago
CBSE BOARD X,
11 months ago
Computer Science,
11 months ago