Prove that:
2cos^3 0-cos 0/
sin 0-2sin^3 0= cot 0
Answers
Step-by-step explanation:
Given Question:-
Prove that:
2cos^3 0-cos 0/sin 0-2sin^3 0= cot 0
Solution:-
LHS:-
(2cos³ 0 - cos 0)/(Sin 0- 2 Sin³ 0)
=>[Cos 0(2 cos² 0-1)]/[Sin 0(1-2 sin² 0)]
=>[Cos 0(2 cos²0-Sin²0 -Cos²0)]/ [ Sin 0 (Sin²0+Cos² 0-2 sin²0)]
=>[Cos 0(Cos²0- Son²0)]/[Sin0(Cos² 0- sin²0)]
Cancelling Cos²0 - sin²0
=>Cos 0/Sin 0
=>Cot 0
=>RHS
LHS=RHS
Answer:-
LHS=RHS
Hence, Proved
Prove that :-
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
Additional Information:-
Additional Information:- Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
─━─━─━─━─━─━─━─━─━─━─━─━─