Math, asked by SARUKESHCR7, 3 months ago

Prove that:
2cos^3 0-cos 0/
sin 0-2sin^3 0= cot 0

Answers

Answered by tennetiraj86
64

Step-by-step explanation:

Given Question:-

Prove that:

2cos^3 0-cos 0/sin 0-2sin^3 0= cot 0

Solution:-

LHS:-

(2cos³ 0 - cos 0)/(Sin 0- 2 Sin³ 0)

=>[Cos 0(2 cos² 0-1)]/[Sin 0(1-2 sin² 0)]

=>[Cos 0(2 cos²0-Sin²0 -Cos²0)]/ [ Sin 0 (Sin²0+Cos² 0-2 sin²0)]

=>[Cos 0(Cos²0- Son²0)]/[Sin0(Cos² 0- sin²0)]

Cancelling Cos²0 - sin²0

=>Cos 0/Sin 0

=>Cot 0

=>RHS

LHS=RHS

Answer:-

LHS=RHS

Hence, Proved

Attachments:
Answered by mathdude500
4

Prove that :-

 \tt \:  ⟼ \:\dfrac{2 {cos}^{3}\:  \theta  - cos\:  \theta}{sin\:  \theta - 2 {sin}^{3}\:  \theta } = cot\:  \theta

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\large \boxed{ \tt \:  \red{ ⟼ (1) \: {sin}^{2} \:  \theta +  {cos}^{2} \:  \theta = 1}}

\large \boxed{ \tt \:  \red{ ⟼ (2) \:cot\:  \theta \:  =  \: \dfrac{cos\:  \theta}{sin\:  \theta} }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\large \boxed{ \tt \:  \red{ ⟼  \:Consider  \: LHS \: }}

 \tt \:  ⟼ \:\dfrac{ 2 {cos}^{3}\:  \theta -  cos\:  \theta}{sin\:  \theta -  {2sin}^{3}\:  \theta }

 \tt \:  ⟼  \:  = \dfrac{cos\:  \theta \: ( 2 {cos}^{2} \:  \theta - 1)}{sin\:  \theta \: (1 - 2 {sin}^{2} \:  \theta )}

 \tt \:  ⟼  = cot\:  \theta \times \dfrac{2(1 -  {sin}^{2}\:  \theta) - 1 }{1 -  {2sin}^{2}\:  \theta }

 \tt \:  ⟼  =  \: cot\:  \theta \times \dfrac{2 -  {2sin}^{2} \:  \theta - 1}{1 -  {2sin}^{2}\:  \theta }

 \tt \:  ⟼  \:  = cot\:  \theta \times \dfrac{ \cancel{1 -  {2sin}^{2} \:  \theta}}{\cancel{1 -  {2sin}^{2} \:  \theta}}

 \tt \:  ⟼  =  \: cot\:  \theta

 \tt \:  ➦ LHS = RHS

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\tt \:  ⟼ Explore \:  \:  more } ✍

Additional Information:-

Additional Information:- Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions