Math, asked by nikhatj17231, 9 months ago

Prove that 2cos^3Φ-cosΦ/sinΦ-2sin^3Φ=cotΦ

Answers

Answered by mysticd
1

 LHS = \frac{ 2cos^{3}Φ-cosΦ}{sinΦ-2sin^{3}Φ}

= \frac{ cosΦ( 2cos^{2}Φ - 1)}{sinΦ(1- 2sin^{2}Φ )}

= cotΦ\big(\frac{ 2(1-sin^{2}Φ )-1}{(1- 2sin^{2}Φ)}\big)

 =  cotΦ\big(\frac{ 2-2sin^{2}Φ -1}{(1- 2sin^{2}Φ)}\big)

 =cotΦ\big(\frac{ 1-2sin^{2}Φ }{1- 2sin^{2}Φ}\big)\\= cotΦ\\= RHS

 Hence \:proved .

•••♪

Answered by Anonymous
14

Solution

We Are Given,

 \sf \:  \dfrac{2 {cos}^{3} \alpha  - cos \:  \alpha  }{ sin \:  \alpha  \:  - 2 {sin}^{3} \alpha  }   = cot \:  \alpha

LHS

 \sf \:  \dfrac{2 {cos}^{3} \alpha  - cos \:  \alpha  }{ sin \:  \alpha  \:  - 2 {sin}^{3} \alpha  }  \\  \\  \dashrightarrow \:  \sf \:  \dfrac{cos \:  \alpha (2 {cos}^{2} \alpha  - 1) }{sin \:  \alpha (1 - 2sin {}^{2} \alpha ) }  \\  \\  \dashrightarrow \:  \sf \:  \dfrac{cos \:  \alpha }{sin \:  \alpha }  \times   \cancel{\dfrac{cos2 \alpha }{cos2 \alpha } } \\  \\  \dashrightarrow \:  \sf \:  \dfrac{cos \:  \alpha }{sin \:  \alpha }  \\  \\   \large{\dashrightarrow \boxed { \boxed{\sf \: cot \:  \alpha }}}

NOTE

 \star \ \boxed{\boxed{\sf \: cos2 \alpha  =  {cos}^{2}  \alpha  -  {sin}^{2}  \alpha }} \\  \\

\sf Now, \\ \longrightarrow \:  \sf \: cos2 \alpha  = (1 - sin {}^{2}  \alpha ) - sin {}^{2}  \alpha  \\  \\  \longrightarrow \: \boxed{ \boxed{  \:  \sf \: cos2 \alpha  = 1 - 2 {sin}^{2}  \alpha }}

Similarly,

 \sf \: cos \alpha  =  {cos}^{2}  \alpha  - (1 - cos {}^{2}  \alpha ) \\  \\ \longrightarrow \:  \boxed{ \boxed{ \sf \: cos2 \alpha  = 2 {cos}^{2}  \alpha  - 1}}

Hence,ProveD

Similar questions