prove that : √2cos((π/4)+x) = cosx - sinx
Answers
Consider,
We know,
So, using this
We know,
So, on substituting these values, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Explore more :-
Trigonometry Formulas
sin(−θ) = −sin θ
cos(−θ) = cos θ
tan(−θ) = −tan θ
cosec(−θ) = −cosecθ
sec(−θ) = sec θ
cot(−θ) = −cot θ
Product to Sum Formulas
sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
cos x cos y = 1/2[cos(x–y) + cos(x+y)]
sin x cos y = 1/2[sin(x+y) + sin(x−y)]
cos x sin y = 1/2[sin(x+y) – sin(x−y)]
Sum to Product Formulas
sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
Sum or Difference of angles
cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B
sin (A+B) = sin A cos B + cos A sin B
sin (A -B) = sin A cos B – cos A sin B
tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A
sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A
Multiple and Submultiple angles
sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
tan 2A = (2 tan A)/(1-tan²A)
Answer:
Consider,
We know,
So, using this
We know,
So, on substituting these values, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Explore more :-
Trigonometry Formulas
sin(−θ) = −sin θ
cos(−θ) = cos θ
tan(−θ) = −tan θ
cosec(−θ) = −cosecθ
sec(−θ) = sec θ
cot(−θ) = −cot θ
Product to Sum Formulas
sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
cos x cos y = 1/2[cos(x–y) + cos(x+y)]
sin x cos y = 1/2[sin(x+y) + sin(x−y)]
cos x sin y = 1/2[sin(x+y) – sin(x−y)]
Sum to Product Formulas
sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
Sum or Difference of angles
cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B
sin (A+B) = sin A cos B + cos A sin B
sin (A -B) = sin A cos B – cos A sin B
tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A
sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A
Multiple and Submultiple angles
sin2A = 2sinA cosA = [2tan A /(1+tan²A)]
cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]
tan 2A = (2 tan A)/(1-tan²A)