Math, asked by alexlee54ok, 1 day ago

prove that : √2cos((π/4)+x) = cosx - sinx​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\: \sqrt{2} \: cos\bigg[\dfrac{\pi}{4} + x \bigg] \:

We know,

\boxed{ \tt{ \: cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny \: }}

So, using this

 \rm =  \:  \sqrt{2}\bigg[cosx \: cos\dfrac{\pi}{4}  - sinx \: sin\dfrac{\pi}{4}\bigg]

We know,

 \:  \:  \:  \:  \: \boxed{ \tt{ \: cos\dfrac{\pi}{4} =  \frac{1}{ \sqrt{2} } \: }} \: and \:  \: \boxed{ \tt{ \: sin\dfrac{\pi}{4} =  \frac{1}{ \sqrt{2} } \: }}

So, on substituting these values, we get

 \rm =  \:  \sqrt{2}\bigg[\dfrac{1}{ \sqrt{2} }  \: cosx \:  -  \: \dfrac{1}{ \sqrt{2}}  \: sinx\bigg]

 \rm =  \:  \sqrt{2}\bigg[\dfrac{cosx - sinx}{ \sqrt{2} }   \: \bigg]

 \rm =  \: cosx - sinx

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: \sqrt{2} \: cos\bigg[\dfrac{\pi}{4} + x \bigg] \:  =  \: cosx - sinx \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more :-

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

Answered by XxitsmrseenuxX
0

Answer:

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\: \sqrt{2} \: cos\bigg[\dfrac{\pi}{4} + x \bigg] \:

We know,

\boxed{ \tt{ \: cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny \: }}

So, using this

 \rm =  \:  \sqrt{2}\bigg[cosx \: cos\dfrac{\pi}{4}  - sinx \: sin\dfrac{\pi}{4}\bigg]

We know,

 \:  \:  \:  \:  \: \boxed{ \tt{ \: cos\dfrac{\pi}{4} =  \frac{1}{ \sqrt{2} } \: }} \: and \:  \: \boxed{ \tt{ \: sin\dfrac{\pi}{4} =  \frac{1}{ \sqrt{2} } \: }}

So, on substituting these values, we get

 \rm =  \:  \sqrt{2}\bigg[\dfrac{1}{ \sqrt{2} }  \: cosx \:  -  \: \dfrac{1}{ \sqrt{2}}  \: sinx\bigg]

 \rm =  \:  \sqrt{2}\bigg[\dfrac{cosx - sinx}{ \sqrt{2} }   \: \bigg]

 \rm =  \: cosx - sinx

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: \sqrt{2} \: cos\bigg[\dfrac{\pi}{4} + x \bigg] \:  =  \: cosx - sinx \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more :-

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

Similar questions