Math, asked by amblysudhir, 4 months ago

Prove that
2cos3θ−cosθsinθ−2sin3θ​=tanθ


Answers

Answered by needafatima239
0

Answer:

Answer

Given,

2cos

3

θ−cosθ

sinθ−2sin

3

θ

=tanθ

L.H.S=

2cos

3

θ−cosθ

sinθ−2sin

3

θ

=

cosθ(2cos

2

θ−1)

sinθ(1−2sin

2

θ)

=

cosθ

sinθ

[

2(1−sin

2

θ)−1

1−2sin

2

θ

]

=tanθ[

2−2sin

2

θ−1

1−2sin

2

θ

]

=tanθ[

1−2sin

2

θ

1−2sin

2

θ

]

=tanθ

=R.H.S

2cos

3

θ−cosθ

sinθ−2sin

3

θ

=tanθ

Step-by-step explanation:

plz mark me as a brainlist

Similar questions