Prove that,
2cosAsinB=sin(A+B)-sin(A-B)
#Dont spam
Answers
Answered by
9
Hello!
To Prove:
2cosA•sinA = sin(A+B)-sin(A-B)
Proof:
LHS = 2cosA • sinB
RHS
= sin(A+B)-sin(A-B)
= sinA•cosB+cosA•sinB -(sinA•cosB-cosA•sinB)
= sinA•cos+cosA•sinB -sinA•cosB+cosA•sinB
= 2cosA•sinB
Here,
LHS = RHS
Hence proved
______________________________
Identities used:
sin(A+B) = sinA•cosB+cosA•sinB
sin(A-B) = sinA•cosB-cosA•sinB
TANU81:
Thanks a lot :)
Answered by
1
Answer:
2codAsinB=sin(A+B)-sin(A-B)
sinAcosB+cosAsinB-(sinAcosB-cosAsinB)
sinAcosB+cosAsinB-sinAcosB+cosAsinB
=2cosAsinB
hope it helps
Similar questions
Environmental Sciences,
6 months ago
English,
6 months ago
Physics,
6 months ago
History,
1 year ago
History,
1 year ago