Math, asked by TANU81, 1 year ago

Prove that,

2cosAsinB=sin(A+B)-sin(A-B)

#Dont spam​

Answers

Answered by Anonymous
9

Hello!

To Prove:

2cosAsinA = sin(A+B)-sin(A-B)

Proof:

LHS = 2cosA sinB

RHS

= sin(A+B)-sin(A-B)

= sinAcosB+cosAsinB -(sinAcosB-cosA•sinB)

= sinA•cos+cosAsinB -sinA•cosB+cosAsinB

= 2cosA•sinB

Here,

LHS = RHS

Hence proved

______________________________

Identities used:

sin(A+B) = sinA•cosB+cosAsinB

sin(A-B) = sinA•cosB-cosA•sinB


TANU81: Thanks a lot :)
Anonymous: :)
Anonymous: Ty for @Brainalest
Answered by rahman786khalilu
1

Answer:

2codAsinB=sin(A+B)-sin(A-B)

sinAcosB+cosAsinB-(sinAcosB-cosAsinB)

sinAcosB+cosAsinB-sinAcosB+cosAsinB

=2cosAsinB

hope it helps

Similar questions