Math, asked by shivanipal390, 11 months ago

Prove that 2cospi/13cos9pi/13+cos3pi/13+cos5pi/13=0

Answers

Answered by Anonymous
35

Answer:

\displaystyle{2\cos\dfrac{\pi}{13}\cos\dfrac{9\pi}{13}+\cos\dfrac{3\pi}{13}+\cos\dfrac{5\pi}{13}=0 \ [\text{Proved}]}

Step-by-step explanation

\display \text{Given :}

\displaystyle{2\cos\dfrac{\pi}{13}\cos\dfrac{9\pi}{13}+\cos\dfrac{3\pi}{13}+\cos\dfrac{5\pi}{13}=0}

\displaystyle{\text{L.H.S.}=2\cos\dfrac{\pi}{13}\cos\dfrac{9\pi}{13}+\cos\dfrac{3\pi}{13}+\cos\dfrac{5\pi}{13}}

\display \text{Using formula : }

\display \text{2 cos A cos B = cos ( A + B ) + cos ( A - B )}

\displaystyle{\implies\left(\cos\dfrac{10\pi}{13}+\cos\dfrac{8\pi}{13}\right)+\cos\dfrac{3\pi}{13}+\cos\dfrac{5\pi}{13}}\\\\\\\displaystyle{\implies\cos\dfrac{10\pi}{13}+\cos\dfrac{3\pi}{13}+\cos\dfrac{8\pi}{13}+\cos\dfrac{5\pi}{13}}

\display \text{Now using product formula :}

\displaystyle{\cos \ \text{C}+\cos \ \text{D}=2\cos\left(\dfrac{\text{C + D}}{2}\right).\cos\left(\dfrac{\text{C - D}}{2}\right)}

\displaystyle{\implies\cos\dfrac{10\pi}{13}+\cos\dfrac{3\pi}{13}+\cos\dfrac{8\pi}{13}+\cos\dfrac{5\pi}{13}}\\\\\\\displaystyle{\implies\cos\left(\dfrac{13\pi}{26}\right).\cos\left(\dfrac{7\pi}{26}\right)+\cos\left(\dfrac{13\pi}{26}\right).\cos\left(\dfrac{3\pi}{26}\right)}\\\\\\\displaystyle{\implies\cos\left(\dfrac{\pi}{2}\right).\cos\left(\dfrac{7\pi}{26}\right)+\cos\left(\dfrac{\pi}{2}\right).\cos\left(\dfrac{3\pi}{26}\right)}\\\\\\\display \text{We know $\cos\dfrac{\pi}{2}=0$}

\displaystyle{\implies0\times\cos\left(\dfrac{7\pi}{26}\right)+0\times\cos\left(\dfrac{3\pi}{26}\right)}\\\\\\\displaystyle{\implies0}

\display \text{L.H.S. = R.H.S} .

\display \text{Hence proved.}


Equestriadash: Perfect! <3
Anonymous: Thank you!
Equestriadash: <3
Similar questions