prove that : 2log 15/18 - log 25/162+ log 4/9 = log 2
Answers
Answered by
43
hello friends..
Formula used:
log mn = log m + log n
log m/n = log m- log n
hence :
2log 15/18 - log 25/162+ log 4/9 = log 2
hope it helps...
Formula used:
log mn = log m + log n
log m/n = log m- log n
hence :
2log 15/18 - log 25/162+ log 4/9 = log 2
hope it helps...
Attachments:
Answered by
28
LHS = 2㏒ - ㏒ + ㏒
= ㏒ - ㏒ + ㏒
= ㏒ - ㏒ + ㏒
= ㏒ 225 - ㏒ 324 - [ ㏒ 25 - ㏒ 162 ] + ㏒ 4 - ㏒ 9
= ㏒ 225 - ㏒ 324 - ㏒ 25 + ㏒ 162 + ㏒ 4 - ㏒ 9
= ㏒ 15² - ㏒ 324 - ㏒ 25 + ㏒ 162 + ㏒ 2² - ㏒3²
= 2 ㏒ (3×5) - ㏒ (2²×3⁴) - ㏒ 5² + ㏒ (2×3⁴) + 2㏒2 - 2㏒3
= 2㏒3 + 2㏒5 - [㏒ 2² + ㏒ 3⁴] - 2㏒5 + ㏒ 2 + ㏒ 3⁴ + 2 ㏒2 - 2㏒3
= - 2㏒2 - 4㏒3 + ㏒ 2 + 4㏒3 + 2㏒2
= ㏒ 2
= RHS
Hence proved...
Hope it helps
= ㏒ - ㏒ + ㏒
= ㏒ - ㏒ + ㏒
= ㏒ 225 - ㏒ 324 - [ ㏒ 25 - ㏒ 162 ] + ㏒ 4 - ㏒ 9
= ㏒ 225 - ㏒ 324 - ㏒ 25 + ㏒ 162 + ㏒ 4 - ㏒ 9
= ㏒ 15² - ㏒ 324 - ㏒ 25 + ㏒ 162 + ㏒ 2² - ㏒3²
= 2 ㏒ (3×5) - ㏒ (2²×3⁴) - ㏒ 5² + ㏒ (2×3⁴) + 2㏒2 - 2㏒3
= 2㏒3 + 2㏒5 - [㏒ 2² + ㏒ 3⁴] - 2㏒5 + ㏒ 2 + ㏒ 3⁴ + 2 ㏒2 - 2㏒3
= - 2㏒2 - 4㏒3 + ㏒ 2 + 4㏒3 + 2㏒2
= ㏒ 2
= RHS
Hence proved...
Hope it helps
Similar questions