Math, asked by hardesewahgold3, 1 month ago

Prove that 2log(15/18)-log (25/162)+log(4/9)=log2

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given Logarithmic expression is

\rm :\longmapsto\:2log\bigg[\dfrac{15}{18} \bigg] - log\bigg[\dfrac{25}{162} \bigg] + log\bigg[\dfrac{4}{9} \bigg]

We know,

\boxed{ \tt{ \: log {x}^{y} = ylogx \:  \: }}

So, using this identity, we get

\rm \:  =  \:log {\bigg[\dfrac{15}{18} \bigg]}^{2} - log\bigg[\dfrac{25}{162} \bigg] + log\bigg[\dfrac{4}{9} \bigg]

can be rewritten as

\rm \:  =  \:log {\bigg[\dfrac{15}{18} \bigg]}^{2} + log\bigg[\dfrac{4}{9} \bigg]  - log\bigg[\dfrac{25}{162} \bigg]

We know,

\boxed{ \tt{ \: logx + logy = log(xy) \:  \: }}

and

\boxed{ \tt{ \: logx  -  logy = log \frac{x}{y}  \:  \: }}

So, on using these results, we get

\rm \:  =  \:log\bigg[\dfrac{ {15}^{2} }{ {18}^{2} }  \times \bigg[\dfrac{4}{9} \bigg] \div \bigg[\dfrac{25}{162} \bigg]\bigg]

\rm \:  =  \:log\bigg[\dfrac{ {(3 \times 5)}^{2} }{ {( {3}^{2} \times 2)}^{2} }  \times \bigg[\dfrac{ {2}^{2} }{ {3}^{2} } \bigg]  \times  \bigg[\dfrac{162}{25} \bigg]\bigg]

\rm \:  =  \:log\bigg[\dfrac{ \cancel {3}^{2} \times\cancel  {5}^{2}  }{\cancel {3}^{4}  \times\cancel  {2}^{2} } \times \bigg[\dfrac{\cancel {2}^{2} }{\cancel {3}^{2} } \bigg] \times \bigg[\dfrac{\cancel {3}^{4} \times 2 }{\cancel {5}^{2} } \bigg] \bigg]

\rm \:  =  \:log2

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: 2log\bigg[\dfrac{15}{18} \bigg] - log\bigg[\dfrac{25}{162} \bigg] + log\bigg[\dfrac{4}{9} \bigg] = log2 \: }}

More to know :

\boxed{ \tt{ \:  log_{x}(x) = 1}}

\boxed{ \tt{ \:  log_{x}( {x}^{y} ) = y}}

\boxed{ \tt{ \:  log_{ {x}^{z} }( {x}^{y} ) =  \frac{y}{z} }}

\boxed{ \tt{ \:  {e}^{logx} = x}}

\boxed{ \tt{ \:  {e}^{ylogx} =  {x}^{y} }}

\boxed{ \tt{ \:  {a}^{ log_{a}(x) }  = x}}

\boxed{ \tt{ \:  {a}^{y log_{a}(x) }  =  {x}^{y} }}

Similar questions