Math, asked by ultragrandmam352, 30 days ago

prove that : (2power a/2powerb)powera+b × (2powerb/2powerc)powerb+c × (2powerc/2powera)powerc + a = 1​

Answers

Answered by MrImpeccable
42

ANSWER:

To Prove::

\:\:\bullet\:\:\left(\dfrac{2^a}{2^b}\right)^{a+b}\times\left(\dfrac{2^b}{2^c}\right)^{b+c}\times\left(\dfrac{2^c}{2^a}\right)^{c+a}=1

Proof:

We need to prove that,

\implies\left(\dfrac{2^a}{2^b}\right)^{a+b}\times\left(\dfrac{2^b}{2^c}\right)^{b+c}\times\left(\dfrac{2^c}{2^a}\right)^{c+a}=1

Taking LHS,

\implies\left(\dfrac{2^a}{2^b}\right)^{a+b}\times\left(\dfrac{2^b}{2^c}\right)^{b+c}\times\left(\dfrac{2^c}{2^a}\right)^{c+a}

We know that,

\hookrightarrow \dfrac{m^x}{m^y}=m^{x-y}

So,

\implies\left(\dfrac{2^a}{2^b}\right)^{a+b}\times\left(\dfrac{2^b}{2^c}\right)^{b+c}\times\left(\dfrac{2^c}{2^a}\right)^{c+a}

\implies\left(2^{a-b}\right)^{a+b}\times\left(2^{b-c}\right)^{b+c}\times\left(2^{c-a}\right)^{c+a}

We know that,

\hookrightarrow (m^x)^y=m^{xy}

So,

\implies\left(2^{a-b}\right)^{a+b}\times\left(2^{b-c}\right)^{b+c}\times\left(2^{c-a}\right)^{c+a}

\implies\left(2^{(a-b)(a+b)}\right)\times\left(2^{(b-c)(b+c)}\right)\times\left(2^{(c-a)(c+a)}\right)

We know that,

\hookrightarrow (x-y)(x+y)=x^2-y^2

So,

\implies\left(2^{(a-b)(a+b)}\right)\times\left(2^{(b-c)(b+c)}\right)\times\left(2^{(c-a)(c+a)}\right)

\implies\left(2^{a^2-b^2}\right)\times\left(2^{b^2-c^2}\right)\times\left(2^{c^2-a^2}\right)

We also know that,

\hookrightarrow m^x\times m^y=m^{x+y}

So,

\implies\left(2^{a^2-b^2}\right)\times\left(2^{b^2-c^2}\right)\times\left(2^{c^2-a^2}\right)

\implies2^{(a^2-b^2)+(b^2-c^2)+(c^2-a^2)}

So,

\implies2^{a^2\!\!\!/\:-b^2 \!\!\!/\: +b^2 \!\!\!/\: -c^2 \!\!\!/\: +c^2 \!\!\!/\: -a^2 \!\!\!/\: }

\implies2^{0}

As, x^0=1. So,

\implies2^0

\implies \bf1=RHS

As, LHS=RHS,

HENCE PROVED!!!

Similar questions