Math, asked by hemanitaneja963, 1 year ago

Prove that: 2sec^2 theta- sec^4 theta-2cosec^2 theta+cosec^4 theta=cot^4 theta-tan^4 theta

Answers

Answered by Pitymys
55

Here  LHS=2\sec^2 \theta-\sec^4 \theta-2\csc^2 \theta+\csc^4 \theta

Here make use of the identities

 \sec^2 \theta=1+\tan^2 \theta\\<br />\csc^2 \theta=1+\cot^2 \theta

Using the above inequalities,

 2\sec^2 \theta-\sec^4 \theta=2(1+\tan^2 \theta)-(1+\tan^2 \theta)^2\\<br />2\sec^2 \theta-\sec^4 \theta=2(1+\tan^2 \theta)-(1+2\tan^2+\tan^4 \theta)\\<br />2\sec^2 \theta-\sec^4 \theta=1-\tan^4 \theta

Similarly,

 2\csc^2 \theta-\csc^4 \theta=2(1+\cot^2 \theta)-(1+\cot^2 \theta)^2\\<br />2\csc^2 \theta-\csc^4 \theta=2(1+\cot^2 \theta)-(1+2\cot^2+\cot^4 \theta)\\<br />2\csc^2 \theta-\csc^4 \theta=1-\cot^4 \theta

Thus,

  LHS=2\sec^2 \theta-\sec^4 \theta-2\csc^2 \theta+\csc^4\\<br />LHS=1-\tan^4 \theta -(1-\cot^4 \theta )\\<br />LHS=\cot^4 \theta-\tan^4 \theta=RHS

The proof is complete.

Answered by supreetkaur35
27

Hope this will help you

Mark me brainliest

Follow me..

Attachments:
Similar questions