Math, asked by Loiuyvb, 1 year ago

Prove that, 2sin^2 3π/4 +2cos^2 π/4 + 2sec^2 π/3 = 10 ​

Answers

Answered by Swarnimkumar22
52

\bold{\huge{\underline{Question}}}

 \bf \: Prove \:  that \:  {2 \: sin}^{2}  \frac{3\pi}{4}  +  {2 \: cos}^{2}  \frac{\pi}{4}  +  {2 \: sec}^{2}  \frac{\pi}{3}  = 10

\bold{\huge{\underline{Solution-}}}

 \bf \: Used  \: formulas  \\ \:  \:  \:  \:  \:  \:  \boxed{ \bf \: 1. \:  \:  {sin}^{2}x \:  +  {cos}^{2}x \:  = 1 } \\  \:  \:  \:  \:  \:   \:\boxed{ \bf \: 2. \: \pi = 180 \degree }

 \underline{ \large \bf \: L.H.S} =

 \bf \:  {2 \: sin}^{2}  \frac{3\pi}{4}  +  {2 \: cos}^{2}  \frac{\pi}{4}  + 2 \:  {sec}^{2}  \frac{\pi}{3}  \\  \\  \implies \bf \: 2 \{ \: sin {}^{2}  \frac{3\pi}{4}  +  {cos}^{2}  \frac{\pi}{4}  +  {sec}^{2}  \frac{\pi}{3}  \} \\  \\  \implies \bf \: 2 \{ \:  {sin}^{2} (\pi -  \frac{\pi}{4} ) +  {cos}^{2}  \frac{\pi}{4}  +  {sec}^{2}  \frac{\pi}{3}  \\  \\  \implies \bf \: 2 \{( {sin}^{2}  \frac{\pi}{4}  +  {cos}^{2}  \frac{\pi}{4} ) +  {sec}^{2}  \frac{\pi}{3}  \} \\  \\  \implies \bf \: 2 \{1 + (sec \frac{180 \degree}{3} ) {}^{2}  \} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \{ \tiny \: sin {}^{2} x +  {cos}^{2} x = 1 \\  \\  \implies \bf \: 2 \{ \: 1 + (sec \: 60 \degree) {}^{2}  \} \:  \\  \\  \implies \bf \: 2 \{ \: 1 +  {2}^{2}  \} \\  \\  \implies \bf \: 2 \{1 + 4 \} \\  \\  \implies \bf \: 10

Answered by dia1140
19

2sin^2 3π/4 +2cos^2 π/4 + 2sec^2 π/3

=2 sin^2 3*180/4 +2 cos^2 180/4 +2 sec^2 2*180/3

= 2 sin ^2 3*45+2 cos^2 45 + 2 sec^ 120

= 2 sin^ 135 + 2{ 1/\sqrt{2}}^2 +2 (- sec 60 )^2

= 2 (cos 45)^2+2*1/2+ 2 *2^2

=2 *{1/\sqrt{2}}^2 +1+8

= 2*1/2+1+8

= 1+9

= 10

Similar questions