Math, asked by nisargpadia, 9 months ago

prove that√2sin10+√3cos35=sin55+2cos65​

Answers

Answered by amitsnh
3

Answer:

√2sin10 + √3cos35

= √2 sin(55-45) + √3 cos 35

= √2 (sin55cos45 - cos55sin45) + √3cos(90-55)

= √2 sin55*(1/√2) - √2cos55*(1/√2) + √3sin55

= sin55 - cos55 + √3sin55

= sin55 + √3sin55 - cos55

= sin55 + 2(√3/2*sin55 - 1/2*cos55)

= sin55 + 2(cos30sin55 - sin30cos55)

= sin55 + 2sin(55-30)

= sin55 + 2sin25

= sin55 + 2sin(90-65)

= sin55 + 2cos65

RHS

Similar questions