prove that 2sin² π/6cos²π/3=3/2
prove that..
I need Quality answer please don't post unnecessary Answer and don't spam..
Answers
━━━━━━━━━━━━━━━━━━━━━━━━━
⠀⠀⠀⠀⠀⠀⠀⠀
Taking L.H.S
⠀⠀⠀⠀⠀⠀⠀⠀
putting π = 180°
⠀⠀⠀⠀⠀⠀⠀⠀
= ]
=
=
⠀⠀⠀⠀⠀⠀⠀⠀
Here,
&
⠀⠀⠀⠀
⠀
For cosec 210°
⠀⠀⠀⠀⠀⠀let's first calculate sin 210°
⠀⠀⠀⠀⠀⠀sin 210° =
⠀⠀⠀⠀⠀⠀=
⠀⠀⠀⠀⠀⠀=
⠀⠀⠀⠀⠀
So,
cosec 210° =
= == - 2
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀= 2 +
⠀⠀⠀⠀⠀⠀⠀+ 4 ×
⠀⠀⠀⠀⠀⠀= + 1
⠀⠀⠀⠀⠀⠀= + 1
⠀⠀⠀⠀⠀⠀=
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀
━━━━━━━━━━━━━━━━━━━━━━━━━
Answer:
Taking L.H.S
\bold{2sin²}2sin² \dfrac{π}{6}
6
π
\bold{+\:cosec²\:}+cosec² \dfrac{7π}{6}
6
7π
\bold{cos²}cos² \dfrac{π}{3}
3
π
⠀⠀⠀⠀⠀⠀⠀⠀
putting π = 180°
⠀⠀⠀⠀⠀⠀⠀⠀
= \bold{2sin²}2sin² \dfrac{180}{6}
6
180
\bold{+\:cosec²}+cosec² \dfrac{7\:×\:180}{6}
6
7×180
\bold{cos²}cos² \dfrac{180}{3}
3
180
=\bold{2sin² \:30° \:+ cosec² \:210°\:cos² \:60}2sin²30°+cosec²210°cos²60
=\bold{2(sin\:30°)²\:+\:(cosec\:210°) \: (cos\:60°)²}2(sin30°)²+(cosec210°)(cos60°)²
⠀⠀⠀⠀⠀⠀⠀⠀
Here,
\bold{sin\:30°\:=}sin30°= \dfrac{1}{2}
2
1
& \bold{sin\:cos\:60°=}sincos60°= \dfrac{1}{2}
2
1
⠀⠀⠀⠀
⠀
For cosec 210°
⠀⠀⠀⠀⠀⠀let's first calculate sin 210°
⠀⠀⠀⠀⠀⠀sin 210° = \bold{sin\:(180+30)}sin(180+30)
⠀⠀⠀⠀⠀⠀= \bold{- \:sin 30°}−sin30°
⠀⠀⠀⠀⠀⠀= \dfrac{-1}{2}
2
−1
⠀⠀⠀⠀⠀
So,
cosec 210° = \dfrac{1}{sin\:210°}
sin210°
1
= \dfrac{1}{-1}
−1
1
=\dfrac{2}{-1}
−1
2
= - 2
\text{\large\underline{\red{putting\: values\: in \:equation}}}2(sin30°)2+(cosec210°)?(cos60°)²
⠀⠀⠀⠀⠀= 2 \dfrac{1²}{2}
2
1²
+\bold{(-2)²}(−2)² \dfrac{1²}{2}
2
1²
⠀⠀⠀⠀⠀⠀⠀\bold{=\:2\:×}=2× \dfrac{1}{2}
2
1
+ 4 ×\dfrac{1}{2}
2
1
⠀⠀⠀⠀⠀⠀= \dfrac{1}{2}
2
1
+ 1
⠀⠀⠀⠀⠀⠀= \dfrac{1}{2}
2
1
+ 1
⠀⠀⠀⠀⠀⠀= \dfrac{3}{2}
2
3
⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀\bold{= \:R.H.S}=R.H.S