Math, asked by ehjsbsknsks, 6 months ago

prove that 2sin² π/6cos²π/3=3/2

prove that..
I need Quality answer please don't post unnecessary Answer and don't spam..​

Attachments:

Answers

Answered by Anonymous
2

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\bf\red{\underline{\underline{Solution}}}

⠀⠀⠀⠀⠀⠀⠀⠀

Taking L.H.S

\bold{2sin²}\dfrac{π}{6}\bold{+\:cosec²\:}\dfrac{7π}{6}\bold{cos²}\dfrac{π}{3}

⠀⠀⠀⠀⠀⠀⠀⠀

putting π = 180°

⠀⠀⠀⠀⠀⠀⠀⠀

= \bold{2sin²}\dfrac{180}{6}\bold{+\:cosec²}\dfrac{7\:×\:180}{6}\bold{cos²}]\dfrac{180}{3}

=\bold{2sin² \:30° \:+ cosec² \:210°\:cos² \:60}

=\bold{2(sin\:30°)²\:+\:(cosec\:210°) \: (cos\:60°)²}

⠀⠀⠀⠀⠀⠀⠀⠀

Here,

\bold{sin\:30°\:=}\dfrac{1}{2}& \bold{sin\:cos\:60°=}\dfrac{1}{2}

⠀⠀⠀⠀

For cosec 210°

⠀⠀⠀⠀⠀⠀let's first calculate sin 210°

⠀⠀⠀⠀⠀⠀sin 210° = \bold{sin\:(180+30)}

⠀⠀⠀⠀⠀⠀= \bold{- \:sin 30°}

⠀⠀⠀⠀⠀⠀= \dfrac{-1}{2}

⠀⠀⠀⠀⠀

So,

cosec 210° = \dfrac{1}{sin\:210°}

= \dfrac{1}{-1}=\dfrac{2}{-1}= - 2

\text{\large\underline{\red{putting\: values\: in \:equation}}}

⠀⠀⠀⠀⠀⠀⠀⠀

\bold{=\:2(sin\:30°)2 \:+ \:(cosec\:210°)? \:(cos\: 60°)²}

⠀⠀⠀⠀⠀= 2 \dfrac{1²}{2}+\bold{(-2)²}\dfrac{1²}{2}

⠀⠀⠀⠀⠀⠀⠀\bold{=\:2\:×}\dfrac{1}{2}+ 4 ×\dfrac{1}{2}

⠀⠀⠀⠀⠀⠀= \dfrac{1}{2} + 1

⠀⠀⠀⠀⠀⠀= \dfrac{1}{2} + 1

⠀⠀⠀⠀⠀⠀= \dfrac{3}{2}

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀\bold{= \:R.H.S}

⠀⠀⠀⠀⠀⠀\text{\large\underline{\red{Hence\:proved}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
5

Answer:

Taking L.H.S

\bold{2sin²}2sin² \dfrac{π}{6}

6

π

\bold{+\:cosec²\:}+cosec² \dfrac{7π}{6}

6

\bold{cos²}cos² \dfrac{π}{3}

3

π

⠀⠀⠀⠀⠀⠀⠀⠀

putting π = 180°

⠀⠀⠀⠀⠀⠀⠀⠀

= \bold{2sin²}2sin² \dfrac{180}{6}

6

180

\bold{+\:cosec²}+cosec² \dfrac{7\:×\:180}{6}

6

7×180

\bold{cos²}cos² \dfrac{180}{3}

3

180

=\bold{2sin² \:30° \:+ cosec² \:210°\:cos² \:60}2sin²30°+cosec²210°cos²60

=\bold{2(sin\:30°)²\:+\:(cosec\:210°) \: (cos\:60°)²}2(sin30°)²+(cosec210°)(cos60°)²

⠀⠀⠀⠀⠀⠀⠀⠀

Here,

\bold{sin\:30°\:=}sin30°= \dfrac{1}{2}

2

1

& \bold{sin\:cos\:60°=}sincos60°= \dfrac{1}{2}

2

1

⠀⠀⠀⠀

For cosec 210°

⠀⠀⠀⠀⠀⠀let's first calculate sin 210°

⠀⠀⠀⠀⠀⠀sin 210° = \bold{sin\:(180+30)}sin(180+30)

⠀⠀⠀⠀⠀⠀= \bold{- \:sin 30°}−sin30°

⠀⠀⠀⠀⠀⠀= \dfrac{-1}{2}

2

−1

⠀⠀⠀⠀⠀

So,

cosec 210° = \dfrac{1}{sin\:210°}

sin210°

1

= \dfrac{1}{-1}

−1

1

=\dfrac{2}{-1}

−1

2

= - 2

\text{\large\underline{\red{putting\: values\: in \:equation}}}2(sin30°)2+(cosec210°)?(cos60°)²

⠀⠀⠀⠀⠀= 2 \dfrac{1²}{2}

2

+\bold{(-2)²}(−2)² \dfrac{1²}{2}

2

⠀⠀⠀⠀⠀⠀⠀\bold{=\:2\:×}=2× \dfrac{1}{2}

2

1

+ 4 ×\dfrac{1}{2}

2

1

⠀⠀⠀⠀⠀⠀= \dfrac{1}{2}

2

1

+ 1

⠀⠀⠀⠀⠀⠀= \dfrac{1}{2}

2

1

+ 1

⠀⠀⠀⠀⠀⠀= \dfrac{3}{2}

2

3

⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀\bold{= \:R.H.S}=R.H.S

Similar questions