Prove that -2sinacosa= -2/tana+cota
Answers
Answered by
2
To prove--->
-2SinA CosA = -2 / ( tanA + CotA )
Proof---> First we find value of ( tanA + CotA )
We know that ,
tanA = SinA / CosA , CotA = CosA / SinA
tanA + CotA = ( SinA / CosA ) + ( CosA / SinA )
= ( Sin²A + Cos²A ) / SinA CosA
We know that Sin²A + Cos²Α = 1 , applying it , we get,
= 1 / SinA CosA
Now taking ,
RHS = -2 / ( tanA + CotA )
= -2 / ( 1 / SinA CosA )
= -2 SinA CosA = LHS
Additional information--->
1) Sin²θ + Cos²θ = 1
2) 1 + tan²θ = Sec²θ
3) 1 + Cot²θ = Cosec²θ
4) Sin( 90° - θ ) = Cosθ
5) Cos( 90° - θ ) = Sinθ
6) tan(90° - θ ) = Cotθ
#Answerwithquality&BAL
Answered by
0
RHS
LHS
Similar questions