Math, asked by begf824, 11 months ago

Prove that -2sinacosa= -2/tana+cota

Answers

Answered by rishu6845
2

To prove--->

-2SinA CosA = -2 / ( tanA + CotA )

Proof---> First we find value of ( tanA + CotA )

We know that ,

tanA = SinA / CosA , CotA = CosA / SinA

tanA + CotA = ( SinA / CosA ) + ( CosA / SinA )

= ( Sin²A + Cos²A ) / SinA CosA

We know that Sin²A + Cos²Α = 1 , applying it , we get,

= 1 / SinA CosA

Now taking ,

RHS = -2 / ( tanA + CotA )

= -2 / ( 1 / SinA CosA )

= -2 SinA CosA = LHS

Additional information--->

1) Sin²θ + Cos²θ = 1

2) 1 + tan²θ = Sec²θ

3) 1 + Cot²θ = Cosec²θ

4) Sin( 90° - θ ) = Cosθ

5) Cos( 90° - θ ) = Sinθ

6) tan(90° - θ ) = Cotθ

#Answerwithquality&BAL

Answered by sandy1816
0

RHS

 \frac{ - 2}{tana + cota}  \\  \\  =  \frac{ - 2}{ \frac{sina}{cosa}  +  \frac{cosa}{sina} }  \\  \\  =  \frac{ - 2}{ \frac{ {sin}^{2} a +  {cos}^{2}a }{sinacosa} }  \\  \\  =  \frac{ - 2}{ \frac{1}{sinacosa} }  \\  \\  =  - 2sinacosa

LHS

Similar questions