Math, asked by murarishankar, 1 year ago

prove that 2tan-1(cosx)=tan-1(2cosecx)

Answers

Answered by saurabhsemalti
30

using \:  \\ tan {}^{ - 1} x +  {tan}^{ - 1} y \\  =  {tan}^{ - 1} ( \frac{x + y}{1 - xy} )
here x=y =cosx
so., LHS becomes
 \:  \:  \:  \:  \: 2 {tan}^{ - 1} (cosx)   \\  =  {tan}^{ - 1}(cosx) +  {tan}^{ - 1} (cosx)  \\  =  {tan}^{ - 1}( \frac{2cosx}{1 -  {cos}^{2} x}  ) \\  =  {tan}^{ - 1} ( \frac{2cosx}{sin {}^{2}x } ) \\  =  {tan}^{ - 1} (2cosecx)

mark as brainliest if helped
Answered by jitumahi435
3

To prove that: 2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x).

Solution:

We know that,

2\tan^{-1}x=\tan^{-1}\dfrac{2x}{1-x^2}

Put x = \cos x, we get

2\tan^{-1}(\cos x) = \tan^{-1}\dfrac{2\cos x}{1-\cos^2 x}

2\tan^{-1}(\cos x) = \tan^{-1}\dfrac{2\cos x}{\sin^2 x}              ........... (1)

[∵ \sin^2 A+\cos^2 A = 1]

Given by question,

2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x)                   ........... (2)

Comparing equations (1) and (2), we get

\dfrac{2\cos x}{\sin^2 x} = 2\csc x

⇒  \dfrac{\cos x}{\sin^2 x} = \dfrac{1}{\sin x}

\tan x =

\tan x = \tan 45°

⇒ x = 45°

∴ 2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x), proved.

Thus, 2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x), proved.

Similar questions