Prove that 2tan 50º = tan 70° - tan20°
Answers
Answered by
1
Answer:
tan ( 70 - 20) = tan50
tan70 - tan20 = tan50(1+ tan20 tan70)
tan70 - tan20= tan50 + tan20 tan70 tan50
tan70 - tan20= tan50 + tan( 90 - 70) tan70tan50
tan70 - tan20= tan50 +cot70 *tan70*tan50
tan70 - tan20 = 2tan50
since
tanA *cotA=1
Hence LHS = RHS proved
Answered by
2
According to the trigonometric identity,
tan70 = tan (20 + 50)
tan70= (tan20 + tan50) / 1-tan20 tan50
tan70 - tan20 tan50 tan70= tan20 + tan50
Also tan70 tan20 = tan70 cot70 = 1
Hence, it will change to following equation
tan70 - tan50 = tan20 + tan50
So tan70 = tan20 + 2tan50
Complementary angles:
tan70=cot20
tan70tan20=cot20tan20=1
Tangent difference angle formula:
tan(a−b)=tana−tanb1+tanatanb
tan50=tan(70−20)=tan70−tan201+tan70tan20=tan70−tan201+1
2tan50=tan70−tan20
tan70=tan20+2tan50
Similar questions