Prove that 2x^3+2y^3+2z^3-6xyz=((x+y+z){(x-y)^2+(y-z)^2+(z-x)^2} hence evaluate 2(13)^3+2(14)^3+2(15)^3-6*13*14*15. Plz give the answer in detail.....Plz solve this........The best answer will be marked as brainliest.
Answers
Answered by
55
Hey Mate !
Here is your solution :
R.H.S = ( x + y + z ) { ( x - y )² + ( y - z )² + ( z - x )² }.
L.H.S = 2x³ + 2y³ + 2z³ - 6xyz.
By taking out 2 as common ,
= 2 ( x³ + y³ + z³ - 3xyz )
= 2 ( x + y + z ) ( x² + y² + z² - xy - yz - zx )
= ( x + y + z ) ( 2x² + 2y² + 2z² - 2xy - 2yz - 2zx )
= ( x + y + z ) { ( x - y )² + ( y - z )² + ( z - x )²}
Proved !!
Identities used in this solution :
★ a³ + b³ + c³ - 3ab
= ( a + b + c ) ( a² + b² + c² - ab - bc - ca )
★ 2x² + 2y² + 2z² - 2xy - 2yz - 2zx
= ( x - y )² + ( y - z )² + ( z - x )²
Proof :
= 2x² + 2y² + 2z² - 2xy - 2yz - 2zx
Rearranging the terms :
= x² + y² - 2xy + y² + z² - 2yz + x² + z² - 2zx
Using identity :
[ ( a² + b² - 2ab ) = ( a - b )² ]
= ( x - y )² + ( y - z )² + ( z - x )²
Proved !!
-------------------------------------------------------
= 2( 13 )³ + 2( 14 )³ + 2( 15 )³ - 6 × 13 × 14 ×15
Suppose ,
13 = a , 14 = b and 15 = c
Now,
= 2a³ + 2b³ + 2c³ - 6abc
Using identity :
= ( a + b + c ) { ( a - b )²+ ( b - c )²+ ( c - a )²}
By putting the value of a,b and c.
= ( 13 + 14 + 15 ) { ( 13 - 14 )² + ( 14 - 15 )² + ( 15 - 13 )² }
= ( 42 ) { ( -1 )² + ( -1 )² + ( 2 )² }
= 42 ( 1 + 1 + 4 )
= 42 × 6
= 252
The required answer is 252.
=================================
Hope it helps !! ^_^
Here is your solution :
R.H.S = ( x + y + z ) { ( x - y )² + ( y - z )² + ( z - x )² }.
L.H.S = 2x³ + 2y³ + 2z³ - 6xyz.
By taking out 2 as common ,
= 2 ( x³ + y³ + z³ - 3xyz )
= 2 ( x + y + z ) ( x² + y² + z² - xy - yz - zx )
= ( x + y + z ) ( 2x² + 2y² + 2z² - 2xy - 2yz - 2zx )
= ( x + y + z ) { ( x - y )² + ( y - z )² + ( z - x )²}
Proved !!
Identities used in this solution :
★ a³ + b³ + c³ - 3ab
= ( a + b + c ) ( a² + b² + c² - ab - bc - ca )
★ 2x² + 2y² + 2z² - 2xy - 2yz - 2zx
= ( x - y )² + ( y - z )² + ( z - x )²
Proof :
= 2x² + 2y² + 2z² - 2xy - 2yz - 2zx
Rearranging the terms :
= x² + y² - 2xy + y² + z² - 2yz + x² + z² - 2zx
Using identity :
[ ( a² + b² - 2ab ) = ( a - b )² ]
= ( x - y )² + ( y - z )² + ( z - x )²
Proved !!
-------------------------------------------------------
= 2( 13 )³ + 2( 14 )³ + 2( 15 )³ - 6 × 13 × 14 ×15
Suppose ,
13 = a , 14 = b and 15 = c
Now,
= 2a³ + 2b³ + 2c³ - 6abc
Using identity :
= ( a + b + c ) { ( a - b )²+ ( b - c )²+ ( c - a )²}
By putting the value of a,b and c.
= ( 13 + 14 + 15 ) { ( 13 - 14 )² + ( 14 - 15 )² + ( 15 - 13 )² }
= ( 42 ) { ( -1 )² + ( -1 )² + ( 2 )² }
= 42 ( 1 + 1 + 4 )
= 42 × 6
= 252
The required answer is 252.
=================================
Hope it helps !! ^_^
Anonymous:
Are you satisfied by my answer ??
Answered by
4
Answer:
please follow me do thank me
Step-by-step explanation:
252
Similar questions
English,
7 months ago
Chemistry,
7 months ago
Computer Science,
1 year ago
Art,
1 year ago
History,
1 year ago