Math, asked by RohanRanganagoudar, 10 months ago

Prove that 3+2√2 is irrational​

Answers

Answered by Anonymous
25

 \huge{ \purple{ \bigstar{ \mathfrak{answer♡</p><p>}}}}

 \huge{ \red{ \ddot{ \smile}}}

_______________________

let us assume that \large{ \boxed{ \purple{3+2\sqrt{2}}}}is rational.

then,

=>3 + 2 \sqrt{2}  =  \frac{a}{b}  \:  \:  \\

where a and b are co prime.

 \large{ \boxed{ \green{\mathbb{EXPLANATION:-}}}}

  =&gt;3 + 2 \sqrt{2}  =  \frac{a}{b}\\  \\  \\ =&gt;2 \sqrt{2}  =  \frac{a}{b}  - 3 \\  \\=&gt; 2 \sqrt{2}  =  \frac{a - 3b}{b}  \\  \\ \sqrt{2}  =  \frac{a - 3b}{2b} \\  \\

since,

a and b are intigers, so

 =&gt;\frac{a - 3b}{2b}  \: is \: rational

so,

=> \large{ \boxed{ \purple{\sqrt{2}}}}is also rational.

but we know that √2 is irrational.

so ,

this contradiction is arissen because of our wrong assumption.

so,

 \large{ \boxed{ \green{3 + 2 \sqrt{2}  \: is \: irrational}}}

____________________

hops this may help you

 \huge{ \red{ \ddot{ \smile}}}

 \huge \blue{ \mathfrak{thanks♡</p><p>}}

Answered by Anonymous
36

AnswEr :

\normalsize\sf\ Let \: \red{ 3 + 2\sqrt{2}} \; be \: a \: rational \: number

\normalsize\sf\ As; \: we \: know \: Rational \: number \: is \: in \: form \: of \: \green{\frac{a}{b}}

\normalsize\dashrightarrow\sf\red{3 + 2 \sqrt{2} } = \green{\frac{a}{b}}

\normalsize\quad\sf\ [\because\ a \: and \: b \: are \: co-prime \: and \: b \: \neq\ \: 0]

\underline{\bigstar\:\textsf{According \: to \: the \: question \: now:}}

\normalsize\ : \implies\sf\ 3 + 2 \sqrt{2}  = \frac{a}{b}

\normalsize\ : \implies\sf\ 2 \sqrt{2}  = \frac{a}{b} - 3

\normalsize\ : \implies\sf\ 2 \sqrt{2} = \frac{a - 3b}{b}

\normalsize\ : \implies\sf\ \sqrt{2} = \frac{a - 3b}{2b}

\boxed{\begin{minipage}{5.3 cm}\underline{\qquad\quad\sf Concept\:Used\qquad\quad}\\\quad\swarrow\qquad\qquad\qquad\searrow\\\sf\frac{a-3b}{2b}(Rational)\qquad\sqrt{2}(Irrational)\\\seaarrow\qquad\qquad\quad(Rational \neq Irrational)\end{minipage}}

\normalsize\sf\ This \: contradicts \: the \: fact \: that \: \red{\sqrt{2}} \: is \: \blue{rational}

\normalsize\sf\ Hence, \: Our \: assumption \: is \: wrong \: \\ \normalsize\sf\ \red{3 + 2 \sqrt{2}} \: is \: \pink{irrational}

\large\maltese \: \: {\boxed{\sf \orange{Hence \: Prove \: !!}}}

Similar questions