Math, asked by BoldBeauty, 10 months ago

Prove that 3+2√2 is irrational​

Answers

Answered by WorstAngeI
27

AnswEr :

\normalsize\sf\ Let \: \red{ 3 + 2\sqrt{2}} \; be \: a \: rational \: number

\normalsize\sf\ As; \: we \: know \: Rational \: number \: is \: in \: form \: of \: \green{\frac{a}{b}}

\normalsize\dashrightarrow\sf\red{3 + 2 \sqrt{2} } = \green{\frac{a}{b}}

\normalsize\quad\sf\ [\because\ a \: and \: b \: are \: co-prime \: and \: b \: \neq\ \: 0]

\underline{\bigstar\:\textsf{According \: to \: the \: question \: now:}}

\normalsize\ : \implies\sf\ 3 + 2 \sqrt{2}  = \frac{a}{b}

\normalsize\ : \implies\sf\ 2 \sqrt{2}  = \frac{a}{b} - 3

\normalsize\ : \implies\sf\ 2 \sqrt{2} = \frac{a - 3b}{b}

\normalsize\ : \implies\sf\ \sqrt{2} = \frac{a - 3b}{2b}

\boxed{\begin{minipage}{5.3 cm}\underline{\qquad\quad\sf Concept\:Used\qquad\quad}\\\quad\swarrow\qquad\qquad\qquad\searrow\\\sf\frac{a-3b}{2b}(Rational)\qquad\sqrt{2}(Irrational)\\\seaarrow\qquad\qquad\quad(Rational \neq Irrational)\end{minipage}}

\normalsize\sf\ This \: contradicts \: the \: fact \: that \: \red{\sqrt{2}} \: is \: \blue{rational}

\normalsize\sf\ Hence, \: Our \: assumption \: is \: wrong \: \\ \normalsize\sf\ \red{3 + 2 \sqrt{2}} \: is \: \pink{irrational}

\large\maltese \: \: {\boxed{\sf \orange{Hence \: Prove \: !!}}}

Answered by Anonymous
53

Question :

Prove that 3+2√2 is irrational

Solution :

we have to prove that 3+2√2 is irrational.

Let us assume that 3+2√2 is irrational.

we know that if any no is rational then it can be written in the form \sf\dfrac{p}{q}

Hence,\sf3+2\sqrt{2} can be writing in the form \sf\dfrac{a}{b} where a,b(b≠0 ) are co- prime .

Thus ,

\sf3+2\sqrt{2}=\dfrac{a}{b}

\sf2\sqrt{2}=\dfrac{a}{b}-3

\sf2\sqrt{2}=\dfrac{a-3b}{b}

\sf\sqrt{2}=\dfrac{a-3b}{2b}

Here ,

\sf\dfrac{a-3b}{2b}\:is\:rational

But √3 is irrational.

Since, Rational≠iraational

This is a contradiction

∴ Our assumption is wrong

Hence ,3+2√2 is irrational.

Hence , Proved

Similar questions