Math, asked by jane07, 2 months ago

Prove that : (3√2/√3-√2) - (4√3/√6+√2) + (√6/√2+√3) =0​

Answers

Answered by vipinkumar212003
0

Step-by-step explanation:

\frac{3 \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  -  \frac{4 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} }  +  \frac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }  = 0 \\ Taking \: L.H.S: \\ =  (\frac{3 \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} } )  -  (\frac{4 \sqrt{3} }{ \sqrt{6}  +  \sqrt{2} } \times  \frac{ \sqrt{6} -  \sqrt{2}  }{ \sqrt{6}  -  \sqrt{2} })   + ( \frac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} } \times   \frac{ \sqrt{2} -  \sqrt{3}  }{ \sqrt{2}  -  \sqrt{3} } ) \\   = \frac{ 3\sqrt{2}( \sqrt{3}  +  \sqrt{2} ) }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }  -  \frac{4 \sqrt{3} ( \sqrt{6} -  \sqrt{2}  )}{ {( \sqrt{6} )}^{2} -  {( \sqrt{2} )}^{2}  }  +  \frac{ \sqrt{6} ( \sqrt{2}  -  \sqrt{3} )}{ {( \sqrt{2}   )}^{2}  -  {( \sqrt{3} )}^{2} }  \\   = \frac{3 \sqrt{6}  + 3 \sqrt{4} }{3 - 2}  -  \frac{4 \sqrt{18}   + 4 \sqrt{6} }{6 - 2}  +   \frac{ \sqrt{12}  -  \sqrt{18} }{2 - 3}  \\    =  3 \sqrt{6}  +  3\sqrt{4}  -  \frac{4 \sqrt{18}  + 4 \sqrt{6} }{4}    -  \sqrt{12}   +   \sqrt{18}  \\  =  \frac{12 \sqrt{6}  + 12 \sqrt{4}  - 4 \sqrt{18} + 4 \sqrt{6} - 4 \sqrt{12}    +  4 \sqrt{18}  }{4}  \\ =   \frac{12 \sqrt{6} +  12\sqrt{2 \times 2}  - 4 \sqrt{3 \times 3 \times 2}   + 4 \sqrt{6}  - 4 \sqrt{2 \times 2 \times 3}   +  4 \sqrt{3 \times 3 \times 2} }{4}  \\ =   \frac{12 \sqrt{6}  +12 \times 2 - 4 \times 3 \sqrt{2}  + 4 \sqrt{6}  - 4 \times 2 \sqrt{3}   +  4 \times 3 \sqrt{2}  }{4}  \\   = \frac{12 \sqrt{6}  + 24 - 12 \sqrt{2}  + 4 \sqrt{6} - 8 \sqrt{3}  +  12 \sqrt{2}   }{4}  \\   =  \frac{16 \sqrt{6}   - 8 \sqrt{3}  + 24}{4}  \\  = \frac{4(4 \sqrt{6} - 2 \sqrt{3}  + 6 )}{4}  \\  = 4 \sqrt{6} - 2 \sqrt{3}  + 6 \: .is \: not \: equal \: to \: 0

HOPE THIS HELPS

MARK ME BRAINLIEST

Similar questions