Math, asked by rajasreek980, 4 months ago

prove that 3-2√5 is an irrational number​

Answers

Answered by Anonymous
16

 \tt \huge \: Hola!

ProoF :

 \sf \large \: Let,

 \mapsto \sf \: 3-2√5 (=x) \:  \:  is \:  \:  a  \:  \: rational \:  \:  number \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \: x = 3 - 2 \sqrt{5}

 \implies \sf \: 3 - x = 2 \sqrt{5}

 \implies \sf\frac{3 - x}{2}  =  \sqrt{5}  \\

 \sf  hence , \:  \: \sf \:rational \:  \: number \:  =  irrational \:  \: number \\

But it's not possible

hence,

 \sf  { \underline {\boxed{ \tt{ 3 - 2 \sqrt{5}  \:  \: is \:  \: a \:  \: irrational \:  \: number}}}}

________________________________

HOPE THIS IS HELPFUL...

Similar questions