Math, asked by kondalaraonani5, 8 months ago

prove that√3+√2 irrational number​

Answers

Answered by mananmadani53
1

Answer:

Let √3 - √2 = (a/b) is a rational no. So,5 - 2√6 = (a2/b2) a rational no. Since, 2√6 is an irrational no.

Step-by-step explanation:

please mark as brainlist

Answered by janwanigreat
0

Answer:

Let as assume that  √2 +  √3 is a rational number

Then , there exists co - prime positive integers p and q such that

⇒  

3

​  

+  

2

​  

=  

q

p

​  

, where p,q∈z,q  

​  

=0

⇒  

3

​  

=  

q

p

​  

−  

2

​  

 

By squaring on both sodes, (  

3

​  

)  

2

=(  

q

p

​  

−  

2

​  

)  

2

 

3=  

q  

2

 

p  

2

 

​  

−2.  

2

​  

.  

q

p

​  

+2

2  

2

​  

.  

q

p

​  

=  

q  

2

 

p  

2

 

​  

+2−3

⇒2  

2

​  

.  

q

p

​  

=  

q  

2

 

p  

2

 

​  

−1

2(  

2

​  

)  

q

p

​  

=  

q  

2

 

p  

2

−q  

2

 

​  

 

2

​  

=(  

q  

2

 

p  

2

−q  

2

 

​  

)(  

2p

q

​  

)

2

​  

=  

2pq

p  

2

−q  

2

 

​  

 

⇒  

2

​  

 is a rational number ∵  

2pq

p  

2

−q  

2

 

​  

 is rational.

But  

2

​  

 is not a rational number. This leads us to a contradiction.

∴ our assumption that  

3

​  

+  

2

​  

, is a ab be rational number is wrong

⇒  

3

​  

+  

2

​  

 is an irrational number

Step-by-step explanation:

Similar questions